Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (497)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • HPV E6/E7 (30) Apply HPV E6/E7 filter
  • Lgr5 (20) Apply Lgr5 filter
  • PD-L1 (9) Apply PD-L1 filter
  • Axin2 (6) Apply Axin2 filter
  • FGFR1 (6) Apply FGFR1 filter
  • IFN-γ (5) Apply IFN-γ filter
  • HER2 (5) Apply HER2 filter
  • OLFM4 (5) Apply OLFM4 filter
  • MALAT1 (4) Apply MALAT1 filter
  • Wnt4 (4) Apply Wnt4 filter
  • Wnt5a (4) Apply Wnt5a filter
  • MYC (4) Apply MYC filter
  • OLFM4 (4) Apply OLFM4 filter
  • PTEN (4) Apply PTEN filter
  • TERT (4) Apply TERT filter
  • TNF-α (4) Apply TNF-α filter
  • TGF-β (4) Apply TGF-β filter
  • IL-17A (4) Apply IL-17A filter
  • HPV (4) Apply HPV filter
  • AR-V7 (4) Apply AR-V7 filter
  • Wnt7a (3) Apply Wnt7a filter
  • AR (3) Apply AR filter
  • BRCA1 (3) Apply BRCA1 filter
  • MET (3) Apply MET filter
  • CXCL10 (3) Apply CXCL10 filter
  • HEY2 (3) Apply HEY2 filter
  • HOTAIR (3) Apply HOTAIR filter
  • IL-10 (3) Apply IL-10 filter
  • H19 (3) Apply H19 filter
  • HIV (3) Apply HIV filter
  • Lgr4 (3) Apply Lgr4 filter
  • COL11A1 (3) Apply COL11A1 filter
  • ASPM (3) Apply ASPM filter
  • IL-8 (3) Apply IL-8 filter
  • VEGF (3) Apply VEGF filter
  • Il-6 (3) Apply Il-6 filter
  • MERS-CoV (3) Apply MERS-CoV filter
  • HPV HR7 (3) Apply HPV HR7 filter
  • LINC00473 (3) Apply LINC00473 filter
  • PD-l2 (3) Apply PD-l2 filter
  • HIV-1 (3) Apply HIV-1 filter
  • TNFA (3) Apply TNFA filter
  • CD274 (2) Apply CD274 filter
  • TGFB1 (2) Apply TGFB1 filter
  • Wnt10a (2) Apply Wnt10a filter
  • Wnt10b (2) Apply Wnt10b filter
  • Wnt16 (2) Apply Wnt16 filter
  • Wnt1 (2) Apply Wnt1 filter
  • Wnt6 (2) Apply Wnt6 filter
  • Wnt7b (2) Apply Wnt7b filter

Product

  • (-) Remove RNAscope 2.0 Assay filter RNAscope 2.0 Assay (497)

Research area

  • Cancer (244) Apply Cancer filter
  • Infectious Disease (87) Apply Infectious Disease filter
  • Other (72) Apply Other filter
  • Neuroscience (50) Apply Neuroscience filter
  • Inflammation (38) Apply Inflammation filter
  • lncRNA (36) Apply lncRNA filter
  • HPV (34) Apply HPV filter
  • Stem Cells (28) Apply Stem Cells filter
  • Developmental (14) Apply Developmental filter
  • diabetes (14) Apply diabetes filter
  • Immunotherapy (11) Apply Immunotherapy filter
  • Development (9) Apply Development filter
  • Stem cell (5) Apply Stem cell filter
  • Infectious (3) Apply Infectious filter
  • LncRNAs (3) Apply LncRNAs filter
  • Metabolism (3) Apply Metabolism filter
  • Diet (2) Apply Diet filter
  • Infammation (2) Apply Infammation filter
  • Reproduction (2) Apply Reproduction filter
  • Alzheimer's Disease (1) Apply Alzheimer's Disease filter
  • Colon (1) Apply Colon filter
  • Endocrinology-Development (1) Apply Endocrinology-Development filter
  • Excretory (1) Apply Excretory filter
  • Eyes (1) Apply Eyes filter
  • Gut (1) Apply Gut filter
  • Gut microbiome (1) Apply Gut microbiome filter
  • Heart (1) Apply Heart filter
  • HIV (1) Apply HIV filter
  • Hypertension (1) Apply Hypertension filter
  • Hypoglycemia (1) Apply Hypoglycemia filter
  • Infectious Disease: Epstein-Barr virus (1) Apply Infectious Disease: Epstein-Barr virus filter
  • Infectiouse Disease: Yellow Fever (1) Apply Infectiouse Disease: Yellow Fever filter
  • Inflammatory Bowel Disease (1) Apply Inflammatory Bowel Disease filter
  • Intestinal Stem Cells (1) Apply Intestinal Stem Cells filter
  • IO (1) Apply IO filter
  • Kidney (1) Apply Kidney filter
  • Lnc (1) Apply Lnc filter
  • Locomotion (1) Apply Locomotion filter
  • Lung (1) Apply Lung filter
  • Metabolic (1) Apply Metabolic filter
  • Nonalcoholic Fatty Liver Disease (1) Apply Nonalcoholic Fatty Liver Disease filter
  • Other: Liver (1) Apply Other: Liver filter
  • Other: Metabolism (1) Apply Other: Metabolism filter
  • Parasite (1) Apply Parasite filter
  • Sex Differences (1) Apply Sex Differences filter
  • Signalling (1) Apply Signalling filter
  • Skin (1) Apply Skin filter
  • Tumourigenesis (1) Apply Tumourigenesis filter
  • Wound healing (1) Apply Wound healing filter

Category

  • Publications (497) Apply Publications filter
Primate neural retina upregulates IL-6 and IL-10 in response to a herpes simplex vector suggesting the presence of a pro-/anti-inflammatory axis.

Exp Eye Res.

2016 May 08

Sauter MM, Brandt CR.
PMID: 27170050 | DOI: 10.1016/j.exer.2016.05.003

Injection of herpes simplex virus vectors into the vitreous of primate eyes induces an acute, transient uveitis. The purpose of this study was to characterize innate immune responses of macaque neural retina tissue to the herpes simplex virus type 1-based gene delivery vector hrR3. PCR array analysis demonstrated the induction of the pro-inflammatory cytokine IL-6, as well as the anti-inflammatory cytokine IL-10, following hrR3 exposure. Secretion of IL-6 was detected by ELISA and cone photoreceptors and Muller cells were the predominant IL-6 positive cell types. RNA in situ hybridization confirmed that IL-6 was expressed in photoreceptor and Muller cells. The IL-10 positive cells in the inner nuclear layer were identified as amacrine cells by immunofluorescence staining with calretinin antibody. hrR3 challenge resulted in activation of NFκB (p65) in Muller glial cells, but not in cone photoreceptors, suggesting a novel regulatory mechanism for IL-6 expression in cone cells. hrR3 replication was not required for IL-6 induction or NFκB (p65) activation. These data suggest a pro-inflammatory (IL-6)/anti-inflammatory (IL-10) axis exists in neural retina and the severity of acute posterior uveitis may be determined by this interaction. Further studies are needed to identify the trigger for IL-6 and IL-10 induction and the mechanism of IL-6 induction in cone cells.

A heterogeneous population of nuclear-encoded mitochondrial mRNAs is present in the axons of primary sympathetic neurons.

Mitochondrion

2016 Jun 15

Aschrafi A, Kar AN, Gale J, Elkahloun AG, Vargas JN, Sales N, Wilson G, Tompkins M, Gioio AE, Kaplan BB.
PMID: 27318271 | DOI: 10.1016/j.mito.2016.06.002

Mitochondria are enriched in subcellular regions of high energy consumption, such as axons and pre-synaptic nerve endings. Accumulating evidence suggests that mitochondrial maintenance in these distal structural/functional domains of the neuron depends on the "in-situ" translation of nuclear-encoded mitochondrial mRNAs. In support of this notion, we recently provided evidence for the axonal targeting of several nuclear-encoded mRNAs, such as cytochrome c oxidase, subunit 4 (COXIV), ATP synthase, H+ transporting and mitochondrial Fo complex, subunit C1 (ATP5G1). Furthermore, we showed that axonal trafficking and local translation of these mRNAs plays a critical role in the generation of axonal ATP. Using a global gene expression analysis, this study identified a highly diverse population of nuclear-encoded mRNAs that were enriched in the axon and presynaptic nerve terminals. Among this population of mRNAs, fifty seven were found to be at least two fold more abundant in distal axons, as compared with the parental cell bodies. Gene ontology analysis of the nuclear-encoded mitochondrial mRNAs suggested functions for these gene products in molecular and biological processes, including but not limited to oxidoreductase and electron carrier activity and proton transport. Based on these results, we postulate that local translation of nuclear-encoded mitochondrial mRNAs present in the axons may play an essential role in local energy production and maintenance of mitochondrial function.

Wide-field diffuse amacrine cells in the monkey retina contain immunoreactive Cocaine- and Amphetamine-Regulated Transcript (CART)

Peptides.

2016 Aug 25

Long Y, Bordt AS, Liu WS, Davis EP, Lee SJ, Tseng L, Chuang AZ, Whitaker CM, Massey SC, Sherman MB, Marshak DW.
PMID: 27568514 | DOI: 10.1016/j.peptides.2016.08.007

The goals of this study were to localize the neuropeptide Cocaine- and Amphetamine-Regulated Transcript (CART) in primate retinas and to describe the morphology, neurotransmitter content and synaptic connections of the neurons that contain it. Using in situ hybridization, light and electron microscopic immunolabeling, CART was localized to GABAergic amacrine cells in baboon retinas. The CART-positive cells had thin, varicose dendrites that gradually descended through the inner plexiform layer and ramified extensively in the innermost stratum. They resembled two types of wide-field diffuse amacrine cells that had been described previously in macaque retinas using the Golgi method and also A17, serotonin-accumulating and waterfall cells of other mammals. The CART-positive cells received synapses from rod bipolar cell axons and made synapses onto the axons in a reciprocal configuration. The CART-positive cells also received synapses from other amacrine cells. Some of these were located on their primary dendrites, and the presynaptic cells there included dopaminergic amacrine cells. Although some CART-positive somas were localized in the ganglion cell layer, they did not contain the ganglion cell marker RNA binding protein with multiple splicing (RBPMS). Based on these results and electrophysiological studies in other mammals, the CART-positive amacrine cells would be expected to play a major role in the primary rod pathway of primates, providing feedback inhibition to rod bipolar cells.

Adamts18 deletion results in distinct developmental defects and provides a model for congenital disorders of lens, lung, and female reproductive tract development.

Biol Open.

2016 Sep 16

Ataca D, Caikovski M, Piersigilli A, Moulin A, Benarafa C, Earp SE, Guri Y, Kostic C, Arsenivic Y, Soininen R, Apte SS, Brisken C.
PMID: 27638769 | DOI: 10.1242/bio.019711

The ADAMTS family comprises 19 secreted metalloproteinases that cleave extracellular matrix components and have diverse functions in numerous disease and physiological contexts. A number of them remain 'orphan' proteases, among them ADAMTS18, which has been implicated in developmental eye disorders, platelet function and various malignancies. To assess in vivo function of ADAMTS18, we generated a mouse strain with inactivated Adamts18 alleles. In the C57Bl6/Ola background, Adamts18 deficient mice are born in a normal Mendelian ratio, and are viable but show a transient growth delay. Histological examination revealed a 100% penetrant eye defect resulting from leakage of lens material through the lens capsule occurring at embryonic day (E)13.5, when the lens grows rapidly. Adamts18 deficient lungs showed altered bronchiolar branching. Fifty percent of the mutant females are infertile because of vaginal obstruction due to either a dorsoventral vaginal septum or imperforate vagina. The incidence of ovarian rete is increased in the mutant mice. Thus, Adamts18 is essential in the development of distinct tissues and the new mouse strain is likely to be useful for investigating ADAMTS18 function in human disease, particularly in the contexts of infertility and carcinogenesis.

Lipid microdomain modification sustains neuronal viability in models of Alzheimer's disease.

Acta Neuropathol Commun.

2016 Sep 17

Herzer S, Meldner S, Rehder K, Gröne HJ, Nordström V.
PMID: 27639375 | DOI: 10.1186/s40478-016-0354-z.

Decreased neuronal insulin receptor (IR) signaling in Alzheimer's disease is suggested to contribute to synaptic loss and neurodegeneration. This work shows that alteration of membrane microdomains increases IR levels and signaling, as well as neuronal viability in AD models in vitro and in vivo. Neuronal membrane microdomains are highly enriched in gangliosides. We found that inhibition of glucosylceramide synthase (GCS), the key enzyme of ganglioside biosynthesis, increases viability of cortical neurons in 5xFAD mice, as well as in cultured neurons exposed to oligomeric amyloid-β-derived diffusible ligands (ADDLs). We furthermore demonstrate a molecular mechanism explaining how gangliosides mediate ADDL-related toxic effects on IR of murine neurons. GCS inhibition increases the levels of functional dendritic IR on the neuronal surface by decreasing caveolin-1-mediated IR internalization. Consequently, IR signaling is increased in neurons exposed to ADDL stress. Thus, we propose that GCS inhibition constitutes a potential target for protecting neurons from ADDL-mediated neurotoxicity and insulin resistance in Alzheimer's disease.

PD-L1 expression in lung adenosquamous carcinomas compared with the more common variants of non-small cell lung cancer.

Sci Rep.

2017 Apr 07

Shi X, Wu S, Sun J, Liu Y, Zeng X, Liang Z.
PMID: 28387300 | DOI: 10.1038/srep46209

Lung adenosquamous cell carcinomas (ASCs) is a rare variant of NSCLC with a poorer prognosis and fewer treatment option than the more common variants. PD-L1 expression is reported to be the predictor of clinical response in trials of NSCLC. In our study, PD-L1 expression was evaluated via immunohistochemistry using a specific monoclonal antibody (SP263), and PD-L1 mRNA expression was evaluated via in situ hybridization. This study included 51 ASCs, 133 lung adenocarcinomas, and 83 lung squamous cell carcinomas (SCC). Similar results were obtained for PD-L1 expression measured at the mRNA and protein level (k coefficient, 0.851, P = 1.000). PD-L1 expression was significantly higher in the squamous versus glandular component of the 36 ASCs in which the components were analyzed separately. The PD-L1 expression rate was similar in the squamous cell component of ASCs and lung SCC (38.89% vs. 28.92%, P = 0.293), so does the adenocarcinoma component of ASCs and lung adenocarcinomas (11.11% vs 13.53%, P = 1.000). PD-L1 expression correlated significantly with lymphovascular invasion (P = 0.016), but not with EGFR, KRAS, and ALK mutations in lung ASCs. Anit-PD-L1 is a promising treatment option in lung ASC cases in which PD-L1 upregulated and EGFR mutations are present.

Simian Varicella Virus Infects Enteric Neurons and α4β7 Integrin-Expressing Gut-Tropic T-Cells in Nonhuman Primates

Viruses

2018 Mar 28

Ouwendijk W, van Veen S, Mehraban T, Mahalingam R, Verjans G.
PMID: 29597335 | DOI: 10.3390/v10040156

The pathogenesis of enteric zoster, a rare debilitating complication of reactivation of latent varicella-zoster virus (VZV) in the enteric nervous system (ENS), is largely unknown. Infection of monkeys with the closely related Varicellovirus simian varicella virus (SVV) mimics VZV disease in humans. In this study, we determined the applicability of the SVV nonhuman primate model to study Varicellovirus infection of the ENS. We confirmed VZV infection of the gut in latently infected adults and demonstrated that SVV DNA was similarly present in gut of monkeys latently infected with SVV using quantitative real-time PCR. In situ analyses showed that enteric neurons expressed SVV open reading frame (ORF) 63 RNA, but not viral nucleocapsid proteins, suggestive of latent ENS infection. During primary infection, SVV-infected T-cells were detected in gut-draining mesenteric lymph nodes and located in close vicinity to enteric nerves in the gut. Furthermore, flow cytometric analysis of blood from acutely SVV-infected monkeys demonstrated that virus-infected T-cells expressed the gut-homing receptor α4β7 integrin. Collectively, the data demonstrate that SVV infects ENS neurons during primary infection and supports the role of T-cells in virus dissemination to the gut. Because SVV reactivation can be experimentally induced, the SVV nonhuman primate model holds great potential to study the pathogenesis of enteric zoster.

Gorab is required for dermal condensate cells to respond to hedgehog signals during hair follicle morphogenesis

Journal of Investigative Dermatology

2015 Nov 24

Liu Y, Snedecor ER, Choi YJ, Yang N, Zhang X, Xu Y, Han Y, Jones EC, Shroyer KR, Clark RA, Zhang L, Qin C, Chen J.
PMID: - | DOI: 10.1016/j.jid.2015.10.067

GORAB is a golgin that localizes predominantly at the Golgi apparatus and physically interacts with small GTPases. GORAB is ubiquitously expressed in mammalian tissues, including the skin. However, the biological function of this golgin in skin is unknown. Here, we report that disrupting the expression of the Gorab gene in mice results in hair follicle morphogenesis defects that were characterized by impaired follicular keratinocyte differentiation. This hair follicle phenotype was associated with markedly suppressed hedgehog (Hh) signaling pathway in dermal condensates in vivo. Gorab-deficient dermal mesenchymal cells also displayed significantly reduced capability to respond to Hh pathway activation in vitro. Furthermore, we found that the formation of primary cilium, a cellular organelle that is essential for the Hh pathway, was impaired in mutant dermal papilla cells, suggesting that Gorab may be required for the Hh pathway through facilitating the formation of primary cilia. Thus, data obtained from this study provided insight onto the biological functions of Gorab during embryonic morphogenesis of skin in which Hh signaling and primary cilia exert important functions.

GATA4 is essential for bone mineralization via ERα and TGFβ/BMP pathways

J Bone Miner Res. 2014 Jun 16.

Güemes M, Garcia AJ, Rigueur D, Runke S, Wang W, Zhao G, Mayorga VH, Atti E, Tetradis S, Péault B, Lyons K, Miranda-Carboni GA, Krum SA.
PMID: 24932701 | DOI: 10.1002/jbmr.2296.

Osteoporosis is a disease characterized by low bone mass, leading to an increased risk of fragility fractures. GATA4 is a zinc-finger transcription factor that is important in several tissues, such as the heart and intestines, and has recently been shown to be a pioneer factor for estrogen receptor alpha (ERα) in osteoblast-like cells. Herein, we demonstrate that GATA4 is necessary for estrogen-mediated transcription and estrogen-independent mineralization in vitro. In vivo deletion of GATA4, driven by Cre-recombinase in osteoblasts, results in perinatal lethality, decreased trabecular bone properties and abnormal bone development. Microarray analysis revealed GATA4 suppression of TGFβ signaling, necessary for osteoblast progenitor maintenance and concomitant activation of BMP signaling, necessary for mineralization. Indeed, pSMAD1/5/8 signaling, downstream of BMP signaling, is decreased in the trabecular region of conditional knockout femurs, and pSMAD2/3, downstream of TGFβ signaling, is increased in the same region. Together these experiments demonstrate the necessity of GATA4 in osteoblasts. Understanding the role of GATA4 to regulate the tissue specificity of estrogen-mediated osteoblast gene regulation and estrogen-independent bone differentiation may help to develop therapies for post-menopausal osteoporosis. © 2014 American Society for Bone and Mineral Research
Modulation of hypoxia-signaling pathways by extracellular linc-RoR.

J Cell Sci. 2014 Apr 1;127(Pt 7):1585-94

Takahashi K, Yan IK, Haga H, Patel T.
PMID: 24463816 | DOI: 10.1242/jcs.141069.

Resistance to adverse environmental conditions, such as hypoxia, contributes to the reduced efficacy of anticancer therapies and tumor progression. Although deregulated expression of many long noncoding RNA (lncRNA) occurs in human cancers, the contribution of such RNA to tumor responses to hypoxia are unknown. RNA expression profiling identified several hypoxia-responsive lncRNAs, including the long intergenic noncoding RNA, regulator of reprogramming (linc-RoR), which is also increased in expression in malignant liver cancer cells. Linc-RoR expression was increased in hypoxic regions within tumor cell xenografts in vivo. Tumor cell viability during hypoxia was reduced by small interfering RNA (siRNA) to linc-RoR. Compared with controls, siRNA to linc-RoR decreased phosphorylation of p70S6K1 (RPS6KB1), PDK1 and HIF-1α protein expression and increased expression of the linc-RoR target microRNA-145 (miR-145). Linc-RoR was highly expressed in extracellular RNA released by hepatocellular cancer (HCC) cells during hypoxia. Incubation with extracellular vesicle preparations containing extracellular RNA increased linc-RoR, HIF-1α expression and cell survival in recipient cells. These studies show that linc-RoR is a hypoxia-responsive lncRNA that is functionally linked to hypoxia signaling in HCC through a miR-145-HIF-1α signaling module. Furthermore, this work identifies a mechanistic role for the extracellular transfer of linc-RoR in intercellular signaling to promote cell survival during hypoxic stress.
Epithelial IL-1R2 acts as a homeostatic regulator during remission of ulcerative colitis.

Mucosal Immunol.

2015 Nov 04

Mora-Buch R, Dotti I, Planell N, Calderón-Gómez E, Jung P, Masamunt MC, Llach J, Ricart E, Batlle E, Panés J, Salas A.
PMID: 26530134 | DOI: 10.1038/mi.2015.108

Ulcerative colitis (UC) is a chronic intestinal inflammatory disease that may undergo periods of activity followed by remission. We aimed to identify the endogenous regulatory mechanisms that may promote disease remission. Transcriptional and protein analysis of the intestinal mucosa revealed that the IL-1 decoy receptor, interleukin-1 receptor type 2 (IL1R2), was upregulated in remission compared with active UC and controls. We identified epithelial cells as being responsible for increased IL-1R2 production during remission. Expression of IL1R2 was negatively regulated by Wnt/beta-catenin signals in colonic crypts or epithelial stem cell cultures; accordingly, epithelial stem cells upregulated IL-1R2 upon differentiation. Blocking IL-1R2 in isolated colonic crypt cultures of UC patients in remission and T-cell cultures stimulated with biopsy supernatant from UC patients in remission boosted IL-1β-dependent production of inflammation-related cytokines. Finally, IL1R2 transcription was significantly lower in patients that relapsed during a 1-year follow-up period compared with those in endoscopic remission. Collectively, our results reveal that the IL-1/IL-1R2 axis is differentially regulated in the remitting intestinal mucosa of UC patients. We hypothesize that IL-1R2 in the presence of low concentrations of IL-1β may act locally as a regulator of intestinal homeostasis.

Interferon-inducible lncRNA IRF1-AS represses esophageal squamous cell carcinoma by promoting interferon response.

Cancer Lett

2019 Aug 26

Huang J, Li J, Li Y, Lu Z, Che Y, Mao S, Lei Y, Zang R, Zheng S, Liu C, Wang X, Li N, Sun N, He J.
PMID: 31173852 | DOI: 10.1016/j.canlet.2019.05.038

Interferons (IFNs) play crucial roles in the development and treatment of cancer. Long non-coding RNAs (lncRNAs) are emerging molecules involved in cancer progression. Here, we identified and characterized an IFN-inducible nuclear lncRNA IRF1-AS (Interferon Regulatory Factor 1 Antisense RNA) which was positively correlated with IRF1 expression. IFNs upregulate IRF1-AS via the JAK-STAT pathway. Knockdown and overexpression of IRF1-AS revealed that IRF1-AS inhibits oesophageal squamous cell carcinoma (ESCC) proliferation and promotes apoptosis in vitro and in vivo. Mechanistically, IRF1-AS activates IRF1 (Interferon Regulatory Factor 1) transcription through interacting with ILF3 (Interleukin Enhancer Binding Factor 3) and DHX9 (DExH-Box Helicase 9). In turn, IRF1 binds to the IRF1-AS promoter directly and activates IRF1-AS transcription. Global analysis of IRF1-AS-regulated genes indicated that IRF1-AS activates the IFN response in vitro and in vivo. IRF1 knockdown in IRF1-AS-overexpressing cells abolished the antiproliferative effect and activation of the IFN response. Furthermore, IRF1-AS was downregulated in ESCC tissues, and low expression correlated with poor prognosis. In conclusion, the interferon-inducible lncRNA IRF1-AS represses esophageal squamous cell carcinoma progression by promoting interferon response through a positive regulatory loop with IRF1

Pages

  • « first
  • ‹ previous
  • …
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?