ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Nat Commun. 2015 Apr 7;6:6613.
Wang T, Chai R, Kim GS, Pham N, Jansson L, Nguyen DH, Kuo B, May LA, Zuo J, Cunningham LL, Cheng AG.
PMID: 25849379 | DOI: 10.1038/ncomms7613.
J Invest Dermatol. 2015 Feb;135(2):359-68.
Kowalczyk-Quintas C, Schuepbach-Mallepell S, Willen L, Smith TK, Huttner K, Kirby N, Headon DJ, Schneider P.
Cancer Immunol Immunother. 2015 Jan 25.
Okroj M, Holmquist E, Nilsson E, Anagnostaki L, Jirström K, Blom AM.
PMID: 25618258
Head Neck Pathol. 2014 Apr 5
Bishop JA, Yonescu R, Batista D, Yemelyanova A, Ha PK, Westra WH
PMID: 24706055 | DOI: 10.1007/s12105-014-0541-9
Hum Mol Genet.
2015 Sep 24
Collin GB, Hubmacher D, Charette JR, Hicks WL, Stone L, Yu M, Naggert JK, Krebs MP, Peachey NS, Apte SS, Nishina PM.
PMID: 26405179 | DOI: -
Human gene mutations have revealed that a significant number of ADAMTS (a disintegrin-like and metalloproteinase (reprolysin type) with thrombospondin-type 1 motifs) proteins are necessary for normal ocular development and eye function. Mutations in human ADAMTSL4, encoding an ADAMTS-like protein which has been implicated in fibrillin microfibril biogenesis, cause ectopia lentis (EL) and EL et pupillae. Here, we report the first ADAMTSL4 mouse model, tvrm267, bearing a nonsense mutation in Adamtsl4. Homozygous Adamtsl4tvrm267 mice recapitulate the EL phenotype observed in humans, and our analysis strongly suggests that ADAMTSL4 is required for stable anchorage of zonule fibers to the lens capsule. Unexpectedly, homozygous Adamtsl4tvrm267 mice exhibit focal retinal pigment epithelium (RPE) defects primarily in the inferior eye. RPE dedifferentiation was indicated by reduced pigmentation, altered cellular morphology, and a reduction in RPE-specific transcripts. Finally, as with a subset of patients with ADAMTSL4 mutations, increased axial length, relative to age-matched controls, was observed and was associated with the severity of the RPE phenotype. In summary, the Adamtsl4tvrm267 model provides a valuable tool to further elucidate the molecular basis of zonule formation, the pathophysiology of ectopia lentis and ADAMTSL4 function in the maintenance of the RPE.
Development.
2015 Nov 15
Williams SE, Garcia I, Crowther AJ, Li S, Stewart A, Liu H, Lough KJ, O'Neill S, Veleta K, Oyarzabal EA, Merrill JR, Shih YY, Gershon TR.
PMID: 26450969 | DOI: 10.1242/dev.124271
Alterations in genes that regulate brain size may contribute to both microcephaly and brain tumor formation. Here, we report that Aspm, a gene that is mutated in familial microcephaly, regulates postnatal neurogenesis in the cerebellum and supports the growth of medulloblastoma, the most common malignant pediatric brain tumor. Cerebellar granule neuron progenitors (CGNPs) express Aspm when maintained in a proliferative state by sonic hedgehog (Shh) signaling, and Aspm is expressed in Shh-driven medulloblastoma in mice. Genetic deletion of Aspm reduces cerebellar growth, while paradoxically increasing the mitotic rate of CGNPs. Aspm-deficient CGNPs show impaired mitotic progression, altered patterns of division orientation and differentiation, and increased DNA damage, which causes progenitor attrition through apoptosis. Deletion of Aspm in mice with Smo-induced medulloblastoma reduces tumor growth and increases DNA damage. Co-deletion of Aspm and either of the apoptosis regulators Bax or Trp53 (also known as p53) rescues the survival of neural progenitors and reduces the growth restriction imposed by Aspm deletion. Our data show that Aspm functions to regulate mitosis and to mitigate DNA damage during CGNP cell division, causes microcephaly through progenitor apoptosis when mutated, and sustains tumor growth in medulloblastoma.
J Pathol.
2015 Dec 22
Abedalthagafi MS, Wu MP, Merrill PH, Du Z, Woo T, Sheu SH, Hurwitz S, Ligon KL, Santagata S.
PMID: 26690880 | DOI: 10.1002/path.4682.
Well-differentiated human cancers share transcriptional programs with the normal tissue counterparts from which they arise. These programs broadly influence cell behaviour and function and are integral modulators of malignancy. Here, we show that the master regulator of motile ciliogenesis, FOXJ1, is highly expressed in cells along the ventricular surface of the human brain. Strong expression is present in cells of the ependyma and the choroid plexus as well as in a subset of cells residing in the subventricular zone. Expression of FOXJ1 and its transcriptional program is maintained in many well-differentiated human tumours that arise along the ventricle, including low-grade ependymal tumours and choroid plexus papilloma. Anaplastic ependymoma as well as choroid plexus carcinoma show decreased FOXJ1 expression and its associated ciliogenesis program genes. In ependymoma and choroid plexus tumours, reduced expression of FOXJ1 and its ciliogenesis program are markers of poor outcome and are therefore useful biomarkers for assessing these tumours. Transitions in ciliogenesis define distinct differentiation states in ependymal and choroid plexus tumours with important implications for patient care.
Biomedicine & Pharmacotherapy
2016 Feb 16
Ongurua O, Yalcinc S, Rosemblitd C, Zhangb PJ, Kilice S, Gunduzf U.
PMID: - | DOI: 10.1016/j.biopha.2016.02.004
APOBEC3B belongs to a protein family of cytidine deaminases that can insert mutations in DNA and RNA as a result of their ability to deaminate cytidine to uridine. It has been shown that APOBEC3B-catalysed deamination provides a chronic source of DNA damage in breast cancers. We investigated APOBEC3B expression in four drug resistant breast cancer cell lines (Doxorubicin, Etoposide, Paclitaxel and Docetaxel resistant MCF-7 cell lines) using a novel RNA in situ hybridization technology (RNAscope) and compared expression levels with drug sensitive MCF-7 cell line. After RNAscope staining, slides were scanned and saved as digital images using Aperio scanner and software. Quantitative scoring utilizing the number of punctate dots present within each cell boundary was performed for the parameters including positive cell percentage and signal intensity per positive cell. In Doxorubicin and Etoposide resistant MCF-7 cell lines, APOBEC3B expression was approximately five-fold increased (23% and 24% respectively) with higher signal intensity (1.92 and 1.44 signal/cell, respectively) compared to drug sensitive MCF-7 cell line (5%, 1.00 signal/cell) with statistical significance. The increase of APOBEC3B expression in Docataxel resitant and Paclitaxel resistant MCF-7 cell lines was not very high. In conclusion, APOBEC3B expression was increased in some population of tumor cells of drug resistant cell lines. At least for some drugs, APOBEC3B expression may be related to drug resistance, subjecting to some tumor cells to frequent mutation.
Virology
2016 Jul 06
Phan TG, Dreno B, da Costa AC, Li L, Orlandi P, Deng X, Kapusinszky B, Siqueira J, Knol AC, Halary F, Dantal J, Alexander KA, Pesavento PA, Delwart E.
PMID: 27393975 | DOI: 10.1016/j.virol.2016.06.013
We genetically characterized seven nearly complete genomes in the protoparvovirus genus from the feces of children with diarrhea. The viruses, provisionally named cutaviruses (CutaV), varied by 1-6% nucleotides and shared ~76% and ~82% amino acid identity with the NS1 and VP1 of human bufaviruses, their closest relatives. Using PCR, cutavirus DNA was found in 1.6% (4/245) and 1% (1/100) of diarrhea samples from Brazil and Botswana respectively. In silico analysis of pre-existing metagenomics datasets then revealed closely related parvovirus genomes in skin biopsies from patients with epidermotropic cutaneous T-cell lymphoma (CTCL or mycosis fungoides). PCR of skin biopsies yielded cutavirus DNA in 4/17 CTCL, 0/10 skin carcinoma, and 0/21 normal or noncancerous skin biopsies. In situ hybridization of CTCL skin biopsies detected viral genome within rare individual cells in regions of neoplastic infiltrations. The influence of cutavirus infection on human enteric functions and possible oncolytic role in CTCL progression remain to be determined.
BMC Cancer.
2016 Sep 13
Lee KS, Kwak Y, Nam KH, Kim DW, Kang SB, Choe G, Kim WH, Lee HS.
PMID: 27619912 | DOI: 10.1186/s12885-016-2770-7
Am J Physiol Renal Physiol.
2017 Jan 18
Church RH, Ali I, Tate M, Lavin D, Krishnakumar A, Kok HM, Goldschmeding R, Martin F, Brazil D.
PMID: 28100499 | DOI: 10.1152/ajprenal.00344.2016
Grem1, an antagonist of bone morphogenetic proteins, plays a key role in embryogenesis. A highly specific temporospatial gradient of Grem1 and BMP signalling is critical to normal lung, kidney and limb development. Grem1 levels are increased in renal fibrotic conditions including acute kidney injury, diabetic nephropathy, chronic allograft nephropathy and immune glomerulonephritis. A small number of grem1-/- whole body knockout mice on a mixed genetic background (8 %) are viable, with a single, enlarged left kidney and grossly normal histology. Grem1-/- mice displayed mild renal dysfunction at 4 wk, which recovered by 16 wk. Tubular epithelial specific targeted deletion of Grem1 (Grem1-TEC-/-) mice displayed a milder response in both the acute injury and recovery phase of the folic acid model. Grem1-TEC-/- mice had smaller increases in indices of kidney damage compared to wild-type. In the recovery phase of the folic acid model, associated with renal fibrosis, Grem1-TEC-/- mice displayed reduced histological damage and an attenuated fibrotic gene response compared to wild-type controls. Together, these data demonstrated that Grem1 expression in the tubular epithelial compartment plays a significant role in the fibrotic response to renal injury in vivo.
J Pathol.
2017 Feb 27
Lee HM, Lo KW, Wei W, Tsao SW, Chung GT, Ibrahim MH, Dawson CW, Murray PG, Paterson IC, Yap LF.
PMID: 28240350 | DOI: 10.1002/path.4879
Undifferentiated nasopharyngeal carcinoma (NPC) is a cancer with high metastatic potential that is consistently associated with Epstein-Barr virus (EBV) infection. In this study, we have investigated the functional contribution of sphingosine-1-phosphate (S1P) signalling to the pathogenesis of NPC. We show that EBV infection or ectopic expression of the EBV-encoded latent genes (EBNA1, LMP1 and LMP2A) can up-regulate sphingosine kinase 1 (SPHK1), the key enzyme that produces S1P, in NPC cell lines. Exogenous addition of S1P promotes the migration of NPC cells through the activation of AKT; shRNA knockdown of SPHK1 resulted in a reduction in the levels of activated AKT and inhibition of cell migration. We also show that S1P receptor 3 (S1PR3) mRNA is over-expressed in EBV-positive NPC patient-derived xenografts and a subset of primary NPC tissues, and that knockdown of S1PR3 suppressed the activation of AKT and the S1P-induced migration of NPC cells. Taken together, our data point to a central role for EBV in mediating the oncogenic effects of S1P in NPC and identify S1P signalling as a potential therapeutic target in this disease.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com