ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Cell reports
2022 Aug 23
Yang, B;Yang, L;Wang, Y;Maddison, LA;Tang, Z;Haigh, S;Gong, Y;Zhang, Y;Covington, BA;Bosma, KJ;Tong, X;Page-McCaw, P;Gannon, M;Deng, Q;Chen, W;
PMID: 36001973 | DOI: 10.1016/j.celrep.2022.111255
Chinese Journal of Pathology
2015 Nov 30
Shafei W, Yuanyuan L, Ying J, Yufeng L, Quancai C, Zhiyong L, Xuan Z.
PMID: - | DOI: -
Objective:
To investigate in situ mRNA expression of HER 2 oncogene in breast cancers with equivocal immunohistochemical results , and to explore the potential feasibility of RNAscope technique in evaluating HER2 status in breast cancers .Methods Sixty-nine FFPE samples of invasive ductal breast cancer with equivocal HER 2 immunohistochemistry results ( IHC 2+) were collected from surgical excisions from Peking Union Medical College Hospital between June 2010 and June 2013.HER2 status and in situ mRNA expression were tested by fluorescence in situ hybridization ( FISH) and RNAscope respectively using tissue microarray constructed from tumor paraffin blocks .The results of HER2 mRNA expression were scored 0 to 4 ( from low to high levels ) according to mRNA expression in 100 cancer cells .HER2 mRNA expression was evaluated in two groups of patients , with positive and negative FISH results .Results Twenty-three of the 69 samples were FISH positive, including 16 samples that were scored 4 by RNAscope (70%,16/23), 6 samples were scored 3 ( 26%,6/23 ) and one sample was scored 2 ( 4%,1/23 ) .High in situ mRNA expression (score 4 or 3) were observed in 96%of HER2 FISH positive samples.All of samples that were scored 4 by RNAscope were FISH positive .Forty-six samples were FISH negative , including 17 samples that were scored 3 by RNAscope (37%,17/46), 25 samples were scored 2 (54%,25/46), and 4 samples were scored 1 (9%,4/46).Conclusions Breast cancer with HER2 IHC 2 +could be further classified according to in situ mRNA expression status .Among them, RNAscope score of 4 could be one of the interpretation criteria for re-testing IHC 2+samples.In situ detection of HER2 mRNA may be an additional candidate method of confirmation for HER 2 gene amplification or protein overexpression , and has potential clinical utility.
Clin Cancer Res.
2016 Dec 29
Holdhoff M, Guner G, Rodriguez FJ, Hicks JL, Zheng Q, Forman MS, Ye X, Grossman SA, Meeker AK, Heaphy CM, Eberhart CG, De Marzo AM, Arav-Boger R.
PMID: 28034905 | DOI: 10.1158/1078-0432.CCR-16-1490
Tumour Biol. 2018 Nov;40(11):1010428318815032.
2018 Nov 01
Kim GE, Kim NI, Park MH, Lee JS.
PMID: 30486739 | DOI: 10.1177/1010428318815032
Virchows Arch. 2015 Aug 5.
Jang BG, Lee HE, Kim WH.
PMID: 26243012
European Neuropsychopharmacology
Bijlsma EY, Hendriksen H, Baas JMP, Millan MJ, Groenink L.
Breast Cancer Res Treat. 2014 Sep 24.
Filipović A, Lombardo Y, Fronato M, Abrahams J, Aboagye E, Nguyen QD, d'Aqua BB, Ridley A, Green A, Rahka E, Ellis I, Recchi C, Przulj N, Sarajlić A, Alattia JR, Fraering P, Deonarain M, Coombes RC.
PMID: 25248409
Clin Exp Immunol. 2013 Sep;173(3):502-11.
Østvik AE, Granlund AV, Torp SH, Flatberg A, Beisvåg V, Waldum HL, Flo TH, Espevik T, Damås JK, Sandvik AK (2013).
PMID: 23668802 | DOI: 10.1111/cei.12136.
Pathology - Research and Practice
2016 Sep 22
Wanga D, Fu L, Shah W, Zhang J, Yan Y, Ge X, He J, Wang Y, Xu Li.
PMID: - | DOI: dx.doi.org/10.1016/j.prp.2016.09.009
Background and aims
The causative role of high risk human papillomavirus (HR-HPV) in breast cancer development is controversial, though a number of reports have identified HR-HPV DNA in breast cancer specimens. Nevertheless, most studies to date have focused primarily on viral DNA rather than the viral transcription. The aim of this study was to investigate the presence of HR-HPV in breast cancer tissues at HPV DNA level and HPV oncogenes mRNA level by in situ hybridization (ISH).
Methods
One hundred and forty six (146) cases of breast invasive ductal carcinoma(IDC) and 83 cases of benign breast lesions were included in the study. Type specific oligonucleotide probes were used for the DNA detection of HPV 16,18 and 58 by ISH. HR-HPV oncogenes mRNA was assayed by novel RNAscope HR-HPV HR7 assay ISH. p16 protein expression was evaluated by immunohistochemistry (IHC).
Results
HR-HPV 16,18 and 58 DNA were detected in 52 out of 146 (35.6%) IDC and in 3 out of 83 (3.6%) benign breast lesions by ISH. The HR-HPV mRNAs was detected only in a few specimens with strong HPV DNA positivity(4/25) in a few scattered cancer cells with very weak punctate nuclear and/or cytoplasmic staining. p16 over-expression did not correlate with the HPV DNA positive breast cancer samples(17/52 HPVDNA+ vs 28/94 HPV DNA-, p = 0.731).
Conclusions
HR-HPVs certainly exist in breast cancer tissue with less active transcription, which implies that the causal role of HPV in breast cancer development need further study.
PLoS Pathog.
2017 Feb 27
Maidji E, Somsouk M, Rivera JM, Hunt PW, Stoddart CA.
PMID: 28241080 | DOI: 10.1371/journal.ppat.1006202
Although invasive cytomegalovirus (CMV) disease is uncommon in the era of antiretroviral therapy (ART), asymptomatic CMV coinfection is nearly ubiquitous in HIV infected individuals. While microbial translocation and gut epithelial barrier dysfunction may promote persistent immune activation in treated HIV infection, potentially contributing to morbidity and mortality, it has been unclear whether CMV replication in individuals with no symptoms of CMV disease might play a role in this process. We hypothesized that persistent CMV replication in the intestinal epithelium of HIV/CMV-coinfected individuals impairs gut epithelial barrier function. Using a combination of state-of-the-art in situ hybridization technology (RNAscope) and immunohistochemistry, we detected CMV DNA and proteins and evidence of intestinal damage in rectosigmoid samples from CMV-positive individuals with both untreated and ART-suppressed HIV infection. Two different model systems, primary human intestinal cells differentiated in vitro to form polarized monolayers and a humanized mouse model of human gut, together demonstrated that intestinal epithelial cells are fully permissive to CMV replication. Independent of HIV, CMV disrupted tight junctions of polarized intestinal cells, significantly reducing transepithelial electrical resistance, a measure of monolayer integrity, and enhancing transepithelial permeability. The effect of CMV infection on the intestinal epithelium is mediated, at least in part, by the CMV-induced proinflammatory cytokine IL-6. Furthermore, letermovir, a novel anti-CMV drug, dampened the effects of CMV on the epithelium. Together, our data strongly suggest that CMV can disrupt epithelial junctions, leading to bacterial translocation and chronic inflammation in the gut and that CMV could serve as a target for therapeutic intervention to prevent or treat gut epithelial barrier dysfunction during HIV infection.
PLoS Pathog.
2017 May 19
Introini A, Boström S, Bradley F, Gibbs A, Glaessgen A, Tjernlund A, Broliden K.
PMID: 28542587 | DOI: 10.1371/journal.ppat.1006402
The most immediate and evident effect of mucosal exposure to semen in vivo is a local release of proinflammatory mediators accompanied by an influx of leukocytes into the female genital mucosa (FGM). The implication of such response in HIV-1 transmission has never been addressed due to limitations of currently available experimental models. Using human tissue explants from the uterine cervix, we developed a system of mucosal exposure to seminal plasma (SP) that supports HIV-1 replication. Treatment of ectocervical explants with SP resulted in the upregulation of inflammatory and growth factors, including IL-6, TNF, CCL5, CCL20, CXCL1, and CXCL8, and IL1A, CSF2, IL7, PTGS2, as evaluated by measuring protein levels in explant conditioned medium (ECM) and gene expression in tissue. SP treatment was also associated with increased recruitment of monocytes and neutrophils, as observed upon incubation of peripheral blood leukocytes with ECM in a transwell system. To evaluate the impact of the SP-mediated response on local susceptibility to HIV-1, we infected ectocervical explants with the CCR5-tropic variant HIV-1BaL either in the presence of SP, or after explant pre-incubation with SP. In both experimental settings SP enhanced virus replication as evaluated by HIV-1 p24gag released in explant culture medium over time, as well as by HIV-1 DNA quantification in explants infected in the presence of SP. These results suggest that a sustained inflammatory response elicited by SP soon after coitus may promote HIV-1 transmission to the FGM. Nevertheless, ectocervical tissue explants did not support the replication of transmitted/founder HIV-1 molecular clones, regardless of SP treatment. Our system offers experimental and analytical advantages over traditional models of HIV-1 transmission for the study of SP immunoregulatory effect on the FGM, and may provide a useful platform to ultimately identify new determinants of HIV-1 infection at this site.
Journal of virology, 87(8),
Safronetz D, Prescott J, Haddock E, Scott DP, Feldmann H, Ebihara H. (2013).
PMID: 23388711 | DOI: 10.1128/JVI.03291-12.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com