Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (497)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • HPV E6/E7 (30) Apply HPV E6/E7 filter
  • Lgr5 (20) Apply Lgr5 filter
  • PD-L1 (9) Apply PD-L1 filter
  • Axin2 (6) Apply Axin2 filter
  • FGFR1 (6) Apply FGFR1 filter
  • IFN-γ (5) Apply IFN-γ filter
  • HER2 (5) Apply HER2 filter
  • OLFM4 (5) Apply OLFM4 filter
  • MALAT1 (4) Apply MALAT1 filter
  • Wnt4 (4) Apply Wnt4 filter
  • Wnt5a (4) Apply Wnt5a filter
  • MYC (4) Apply MYC filter
  • OLFM4 (4) Apply OLFM4 filter
  • PTEN (4) Apply PTEN filter
  • TERT (4) Apply TERT filter
  • TNF-α (4) Apply TNF-α filter
  • TGF-β (4) Apply TGF-β filter
  • IL-17A (4) Apply IL-17A filter
  • HPV (4) Apply HPV filter
  • AR-V7 (4) Apply AR-V7 filter
  • Wnt7a (3) Apply Wnt7a filter
  • AR (3) Apply AR filter
  • BRCA1 (3) Apply BRCA1 filter
  • MET (3) Apply MET filter
  • CXCL10 (3) Apply CXCL10 filter
  • HEY2 (3) Apply HEY2 filter
  • HOTAIR (3) Apply HOTAIR filter
  • IL-10 (3) Apply IL-10 filter
  • H19 (3) Apply H19 filter
  • HIV (3) Apply HIV filter
  • Lgr4 (3) Apply Lgr4 filter
  • COL11A1 (3) Apply COL11A1 filter
  • ASPM (3) Apply ASPM filter
  • IL-8 (3) Apply IL-8 filter
  • VEGF (3) Apply VEGF filter
  • Il-6 (3) Apply Il-6 filter
  • MERS-CoV (3) Apply MERS-CoV filter
  • HPV HR7 (3) Apply HPV HR7 filter
  • LINC00473 (3) Apply LINC00473 filter
  • PD-l2 (3) Apply PD-l2 filter
  • HIV-1 (3) Apply HIV-1 filter
  • TNFA (3) Apply TNFA filter
  • CD274 (2) Apply CD274 filter
  • TGFB1 (2) Apply TGFB1 filter
  • Wnt10a (2) Apply Wnt10a filter
  • Wnt10b (2) Apply Wnt10b filter
  • Wnt16 (2) Apply Wnt16 filter
  • Wnt1 (2) Apply Wnt1 filter
  • Wnt6 (2) Apply Wnt6 filter
  • Wnt7b (2) Apply Wnt7b filter

Product

  • (-) Remove RNAscope 2.0 Assay filter RNAscope 2.0 Assay (497)

Research area

  • Cancer (244) Apply Cancer filter
  • Infectious Disease (87) Apply Infectious Disease filter
  • Other (72) Apply Other filter
  • Neuroscience (50) Apply Neuroscience filter
  • Inflammation (38) Apply Inflammation filter
  • lncRNA (36) Apply lncRNA filter
  • HPV (34) Apply HPV filter
  • Stem Cells (28) Apply Stem Cells filter
  • Developmental (14) Apply Developmental filter
  • diabetes (14) Apply diabetes filter
  • Immunotherapy (11) Apply Immunotherapy filter
  • Development (9) Apply Development filter
  • Stem cell (5) Apply Stem cell filter
  • Infectious (3) Apply Infectious filter
  • LncRNAs (3) Apply LncRNAs filter
  • Metabolism (3) Apply Metabolism filter
  • Diet (2) Apply Diet filter
  • Infammation (2) Apply Infammation filter
  • Reproduction (2) Apply Reproduction filter
  • Alzheimer's Disease (1) Apply Alzheimer's Disease filter
  • Colon (1) Apply Colon filter
  • Endocrinology-Development (1) Apply Endocrinology-Development filter
  • Excretory (1) Apply Excretory filter
  • Eyes (1) Apply Eyes filter
  • Gut (1) Apply Gut filter
  • Gut microbiome (1) Apply Gut microbiome filter
  • Heart (1) Apply Heart filter
  • HIV (1) Apply HIV filter
  • Hypertension (1) Apply Hypertension filter
  • Hypoglycemia (1) Apply Hypoglycemia filter
  • Infectious Disease: Epstein-Barr virus (1) Apply Infectious Disease: Epstein-Barr virus filter
  • Infectiouse Disease: Yellow Fever (1) Apply Infectiouse Disease: Yellow Fever filter
  • Inflammatory Bowel Disease (1) Apply Inflammatory Bowel Disease filter
  • Intestinal Stem Cells (1) Apply Intestinal Stem Cells filter
  • IO (1) Apply IO filter
  • Kidney (1) Apply Kidney filter
  • Lnc (1) Apply Lnc filter
  • Locomotion (1) Apply Locomotion filter
  • Lung (1) Apply Lung filter
  • Metabolic (1) Apply Metabolic filter
  • Nonalcoholic Fatty Liver Disease (1) Apply Nonalcoholic Fatty Liver Disease filter
  • Other: Liver (1) Apply Other: Liver filter
  • Other: Metabolism (1) Apply Other: Metabolism filter
  • Parasite (1) Apply Parasite filter
  • Sex Differences (1) Apply Sex Differences filter
  • Signalling (1) Apply Signalling filter
  • Skin (1) Apply Skin filter
  • Tumourigenesis (1) Apply Tumourigenesis filter
  • Wound healing (1) Apply Wound healing filter

Category

  • Publications (497) Apply Publications filter
Mammary tumor-derived CCL2 enhances prometastatic systemic inflammation through upregulation of IL1β in tumor-associated macrophages

OncoImmunology

2017 Jun 19

Kersten K, Coffelt SB, Hoogstraat M, Verstegen NJM, Vrijland K, Ciampricotti M, Doornebal CW, Hau CS, Wellenstein MD, Salvagno C, Doshi P, Lips EH, Wessels LFH, de Visser KE.
PMID: - | DOI: 10.1080/2162402X.2017.1334744

Patients with primary solid malignancies frequently exhibit signs of systemic inflammation. Notably, elevated levels of neutrophils and their associated soluble mediators are regularly observed in cancer patients, and correlate with reduced survival and increased metastasis formation. Recently, we demonstrated a mechanistic link between mammary tumor-induced IL17-producing γδ T cells, systemic expansion of immunosuppressive neutrophils and metastasis formation in a genetically engineered mouse model for invasive breast cancer. How tumors orchestrate this systemic inflammatory cascade to facilitate dissemination remains unclear. Here we show that activation of this cascade relies on CCL2-mediated induction of IL1β in tumor-associated macrophages. In line with these findings, expression of CCL2 positively correlates with IL1Β and macrophage markers in human breast tumors. We demonstrate that blockade of CCL2 in mammary tumor-bearing mice results in reduced IL17 production by γδ T cells, decreased neutrophil expansion and enhanced CD8+ T cell activity. These results highlight a new role for CCL2 in facilitating the breast cancer-induced pro-metastatic systemic inflammatory γδ T cell – IL17 – neutrophil axis.

E2F1-regulated long non-coding RNA RAD51-AS1 promotes cell cycle progression, inhibits apoptosis and predicts poor prognosis in epithelial ovarian cancer

Sci Rep.

2017 Jun 30

Zhang X, Liu G, Qiu J, Zhang N, Ding J, Hua K.
PMID: 28667302 | DOI: 10.1038/s41598-017-04736-z

Long non-coding RNA RAD51 antisense RNA 1 (RAD51-AS1, also known as TODRA) has been shown to be down-regulated by E2F1, a key cell cycle and apoptosis regulator, in breast cancer. Little is known regarding the role of RAD51-AS1 in disease. Here, we investigate the role of RAD51-AS1 in epithelial ovarian cancer (EOC). Using luciferase reporter and chromatin immunoprecipitation experiments, we verified RAD51-AS1 as a target of E2F1 under negative regulation in EOC. We then examined RAD51-AS1 expression in EOC samples using in situ hybridization (ISH). RAD51-AS1 was localized to the nucleus and found to be a critical marker for clinical features that significantly correlated with poor survival in EOC patients. RAD51-AS1 was also an independent prognostic factor for EOC. Overexpression of RAD51-AS1promoted EOC cell proliferation, while silencing of RAD51-AS1 inhibited EOC cell proliferation, delayed cell cycle progression and promoted apoptosis in vitro and in vivo. RAD51-AS1 may participate in carcinogenesis via regulation of p53 and p53-related genes. Our study highlights the role of RAD51-AS1 as a prognostic marker of EOC. Based on its regulation of the tumor suppressor p53, RAD51-AS1-based therapy may represent a viable therapeutic option for EOC in the near future.

Quercetin targets hnRNPA1 to overcome enzalutamide resistance in prostate cancer cells.

Mol Cancer Ther.

2017 Jul 20

Tummala R, Lou W, Gao AC, Nadiminty N.
PMID: 28729398 | DOI: 10.1158/1535-7163.MCT-17-0030

Prostate cancer remains dependent on androgen receptor signaling even after castration. Aberrant androgen receptor signaling in castration resistant prostate cancer is mediated by mechanisms such as alterations in the androgen receptor and activation of interacting signaling pathways. Clinical evidence confirms that resistance to the next generation anti-androgen, enzalutamide, may be mediated to a large extent by alternative splicing of the androgen receptor to generate constitutively active splice variants such as AR-V7. The splice variants AR-V7 and Arv567es have been implicated in the resistance to not only enzalutamide, but also to abiraterone and other conventional therapeutics such as taxanes. Numerous studies including ours suggest that splicing factors such as hnRNPA1 promote the generation of AR-V7, thus contributing to enzalutamide resistance in prostate cancer cells. In the present study, we discovered that quercetin, a naturally occurring polyphenolic compound, reduces the expression of hnRNPA1, and consequently, that of AR-V7. The suppression of AR-V7 by quercetin resensitizes enzalutamide-resistant prostate cancer cells to treatment with enzalutamide. Our results indicate that quercetin downregulates hnRNPA1 expression, downregulates the expression of AR-V7, antagonizes androgen receptor signaling, and resensitizes enzalutamide-resistant prostate cancer cells to enzalutamide treatment in vivo in mouse xenografts. These findings demonstrate that suppressing the alternative splicing of the androgen receptor may have important implications in overcoming the resistance to next-generation anti-androgen therapy.

In search of a small molecule agonist of the relaxin receptor RXFP1 for the treatment of liver fibrosis.

Sci Rep.

2017 Sep 07

McBride A, Hoy AM, Bamford MJ, Mossakowska DE, Ruediger MP, Griggs J, Desai S, Simpson K, Caballero-Hernandez I, Iredale JP, Pell T, Aucott RL, Holmes DS, Webster SP, Fallowfield JA.
PMID: 28883402 | DOI: 10.1038/s41598-017-10521-9

The peptide hormone human relaxin-2 (H2-RLX) has emerged as a potential therapy for cardiovascular and fibrotic diseases, but its short in vivo half-life is an obstacle to long-term administration. The discovery of ML290 demonstrated that it is possible to identify small molecule agonists of the cognate G-protein coupled receptor for H2-RLX (relaxin family peptide receptor-1 (RXFP1)). In our efforts to generate a new medicine for liver fibrosis, we sought to identify improved small molecule functional mimetics of H2-RLX with selective, full agonist or positive allosteric modulator activity against RXFP1. First, we confirmed expression of RXFP1 in human diseased liver. We developed a robust cellular cAMP reporter assay of RXFP1 signaling in HEK293 cells transiently expressing RXFP1. A high-throughput screen did not identify further specific agonists or positive allosteric modulators of RXFP1, affirming the low druggability of this receptor. As an alternative approach, we generated novel ML290 analogues and tested their activity in the HEK293-RXFP1 cAMP assay and the human hepatic cell line LX-2. Differences in activity of compounds on cAMP activation compared with changes in expression of fibrotic markers indicate the need to better understand cell- and tissue-specific signaling mechanisms and their disease-relevant phenotypes in order to enable drug discovery.

Indirect presentation in the thymus limits naïve and regulatory T cell differentiation by promoting deletion of self-reactive thymocytes

Immunology.

2018 Feb 07

Yap JY, Wirasinha RC, Chan A, Howard DR, Goodnow CC, Daley SR.
PMID: 29411880 | DOI: 10.1111/imm.12904

Acquisition of T cell central tolerance involves distinct pathways of self-antigen presentation to thymocytes. One pathway termed indirect presentation requires a self-antigen transfer step from thymic epithelial cells (TECs) to bone marrow (BM)-derived cells before the self-antigen is presented to thymocytes. The role of indirect presentation in central tolerance is context-dependent, potentially due to variation in self-antigen expression, processing and presentation in the thymus. Here, we report experiments in mice in which TECs expressed a membrane-bound transgenic self-antigen, hen egg lysozyme (HEL), from either the insulin (insHEL) or thyroglobulin (thyroHEL) promoter. Intrathymic HEL expression was less abundant and more confined to the medulla in insHEL mice compared to thyroHEL mice. When indirect presentation was impaired by generating mice lacking MHCII expression in BM-APCs, insHEL-mediated thymocyte deletion was abolished, whereas thyroHEL-mediated deletion occurred at a later stage of thymocyte development and Foxp3+ T-regulatory cell differentiation increased. Indirect presentation increased the strength of TCR signalling that both self-antigens induced in thymocytes, as assessed by Helios expression. Thus, indirect presentation limits the differentiation of naïve and regulatory T cells by promoting deletion of self-reactive thymocytes.

Expression of periaxin (PRX) specifically in the human cerebrovascular system: PDZ domain-mediated strengthening of endothelial barrier function.

Sci Rep.

2018 Jul 03

Wang MM, Zhang X, Lee SJ, Maripudi S, Keep RF, Johnson AM, Stamatovic SM, Andjelkovic AV.
PMID: 29968755 | DOI: 10.1038/s41598-018-28190-7

Regulation of cerebral endothelial cell function plays an essential role in changes in blood-brain barrier permeability. Proteins that are important for establishment of endothelial tight junctions have emerged as critical molecules, and PDZ domain containing-molecules are among the most important. We have discovered that the PDZ-domain containing protein periaxin (PRX) is expressed in human cerebral endothelial cells. Surprisingly, PRX protein is not detected in brain endothelium in other mammalian species, suggesting that it could confer human-specific vascular properties. In endothelial cells, PRX is predominantly localized to the nucleus and not tight junctions. Transcriptome analysis shows that PRX expression suppresses, by at least 50%, a panel of inflammatory markers, of which 70% are Type I interferon response genes; only four genes were significantly activated by PRX expression. When expressed in mouse endothelial cells, PRX strengthens barrier function, significantly increases transendothelial electrical resistance (~35%; p < 0.05), and reduces the permeability of a wide range of molecules. The PDZ domain of PRX is necessary and sufficient for its barrier enhancing properties, since a splice variant (S-PRX) that contains only the PDZ domain, also increases barrier function. PRX also attenuates the permeability enhancing effects of lipopolysaccharide. Collectively, these studies suggest that PRX could potentially regulate endothelial homeostasis in human cerebral endothelial cells by modulating inflammatory gene programs.

Klotho May Ameliorate Proteinuria by Targeting TRPC6 Channels in Podocytes.

J Am Soc Nephrol.

2016 May 05

Kim JH, Xie J, Hwang KH, Wu YL, Oliver N, Eom M, Park KS, Barrezueta N, Kong ID, Fracasso RP, Huang CL, Cha SK.
PMID: 27151926 | DOI: 10.1681/ASN.2015080888

Klotho is a type-1 membrane protein predominantly produced in the kidney, the extracellular domain of which is secreted into the systemic circulation. Membranous and secreted Klotho protect organs, including the kidney, but whether and how Klotho directly protects the glomerular filter is unknown. Here, we report that secreted Klotho suppressed transient receptor potential channel 6 (TRPC6)-mediated Ca2+influx in cultured mouse podocytes by inhibiting phosphoinositide 3-kinase-dependent exocytosis of the channel. Furthermore, soluble Klotho reduced ATP-stimulated actin cytoskeletal remodeling and transepithelial albumin leakage in these cells. Overexpression of TRPC6 by gene delivery in mice induced albuminuria, and exogenous administration of Klotho ameliorated the albuminuria. Notably, immunofluorescence and in situ hybridization revealed Klotho expression in podocytes of mouse and human kidney. Heterozygous Klotho-deficient CKD mice had aggravated albuminuria compared with that in wild-type CKD mice with a similar degree of hypertension and reduced clearance function. Finally, disrupting the integrity of glomerular filter by saline infusion-mediated extracellular fluid volume expansion increased urinary Klotho excretion. These results reveal a potential novel function of Klotho in protecting the glomerular filter, and may offer a new therapeutic strategy for treatment of proteinuria.

Abnormal male reproduction and embryonic development induced by downregulation of a phospholipid fatty acid-introducing enzyme Lpgat1 in zebrafish

Scientific reports

2022 May 04

Shibata, T;Kawana, H;Nishino, Y;Ito, Y;Sato, H;Onishi, H;Kano, K;Inoue, A;Taketomi, Y;Murakami, M;Kofuji, S;Nishina, H;Miyazawa, A;Kono, N;Aoki, J;
PMID: 35508627 | DOI: 10.1038/s41598-022-11002-4

Phospholipids in the membrane consist of diverse pairs of fatty acids bound to a glycerol backbone. The biological significance of the diversity, however, remains mostly unclear. Part of this diversity is due to lysophospholipid acyltransferases (LPLATs), which introduce a fatty acid into lysophospholipids. The human genome has 14 LPLATs and most of them are highly conserved in vertebrates. Here, we analyzed the function of one of these enzymes, lysophosphatidylglycerol acyltransferase 1 (Lpgat1), in zebrafish. We found that the reproduction of heterozygous (lpgat1+/-) male mutants was abnormal. Crosses between heterozygous males and wild-type females produced many eggs with no obvious cleavage, whereas eggs produced by crosses between heterozygous females and wild-type males cleaved normally. Consistent with this, spermatozoa from heterozygous males had reduced motility and abnormal morphology. We also found that the occurrence of lpgat1 homozygous (lpgat1-/-) mutants was far lower than expected. In addition, downregulation of lpgat1 by morpholino antisense oligonucleotides resulted in severe developmental defects. Lipidomic analysis revealed that selective phospholipid species with stearic acid and docosahexaenoic acid were reduced in homozygous larvae and spermatozoa from heterozygotes. These results suggest that the specific phospholipid molecular species produced by Lpgat1 have an essential role in sperm fertilization and in embryonic development.
Endodermal Wnt signaling Is required for tracheal cartilage formation

Dev Biol. 2015 Jun 17.

Snowball J, Ambalavanan M, Whitsett J, Sinner D.
PMID: 26093309 | DOI: 10.1016/j.ydbio.2015.06.009.

Tracheobronchomalacia is a common congenital defect in which the walls of the trachea and bronchi lack of adequate cartilage required for support of the airways. Deletion of Wls, a cargo receptor mediating Wnt ligand secretion, in the embryonic endoderm using ShhCre mice inhibited formation of tracheal-bronchial cartilaginous rings. The normal dorsal-ventral patterning of tracheal mesenchyme was lost. Smooth muscle cells, identified by Acta2 staining, were aberrantly located in ventral mesenchyme of the trachea, normally the region of Sox9 expression in cartilage progenitors. Wnt/β-catenin activity, indicated by Axin2 LacZ reporter, was decreased in tracheal mesenchyme of Wlsf/f;ShhCre/+ embryos. Proliferation of chondroblasts was decreased and reciprocally, proliferation of smooth muscle cells was increased in Wlsf/f;ShhCre/+ tracheal tissue. Expression of Tbx4, Tbx5, Msx1 and Msx2, known to mediate cartilage and muscle patterning, were decreased in tracheal mesenchyme of Wlsf/f;ShhCre/+ embryos. Ex vivo studies demonstrated that Wnt7b and Wnt5a, expressed by the epithelium of developing trachea, and active Wnt/β-catenin signaling are required for tracheal chondrogenesis before formation of mesenchymal condensations. In conclusion, Wnt ligands produced by the tracheal epithelium pattern the tracheal mesenchyme via modulation of gene expression and cell proliferation required for proper tracheal cartilage and smooth muscle differentiation.
A recurrent regulatory change underlying altered expression and Wnt response of the stickleback armor plates gene EDA.

Elife. 2015 Jan 28;4:e05290.

O'Brown NM, Summers BR, Jones FC, Brady SD, Kingsley DM.
PMID: 25629660 | DOI: 10.7554/eLife.05290.

Armor plate changes in sticklebacks are a classic example of repeated adaptive evolution. Previous studies identified ectodysplasin (EDA) gene as the major locus controlling recurrent plate loss in freshwater fish, though the causative DNA alterations were not known. Here we show that freshwater EDA alleles have cis-acting regulatory changes that reduce expression in developing plates and spines. An identical T → G base pair change is found in EDA enhancers of divergent low-plated fish. Recreation of the T → G change in a marine enhancer strongly reduces expression in posterior armor plates. Bead implantation and cell culture experiments show that Wnt signaling strongly activates the marine EDA enhancer, and the freshwater T → G change reduces Wnt responsiveness. Thus parallel evolution of low-plated sticklebacks has occurred through a shared DNA regulatory change, which reduces the sensitivity of an EDA enhancer to Wnt signaling, and alters expression in developing armor plates while preserving expression in other tissues.
Respiratory Syncytial Virus Disease Is Mediated by Age-Variable IL-33.

PLoS Pathog.

2015 Oct 16

Saravia J, You D, Shrestha B, Jaligama S, Siefker D, Lee GI, Harding JN, Jones TL, Rovnaghi C, Bagga B, DeVincenzo JP, Cormier SA.
PMID: 26473724 | DOI: 10.1371/journal.ppat.1005217.

Respiratory syncytial virus (RSV) is the most common cause of infant hospitalizations and severe RSV infections are a significant risk factor for childhood asthma. The pathogenic mechanisms responsible for RSV induced immunopathophysiology remain elusive. Using an age-appropriate mouse model of RSV, we show that IL-33 plays a critical role in the immunopathogenesis of severe RSV, which is associated with higher group 2 innate lymphoid cells (ILC2s) specifically in neonates. Infection with RSV induced rapid IL-33 expression and an increase in ILC2 numbers in the lungs of neonatal mice; this was not observed in adult mice. Blocking IL-33 with antibodies or using an IL-33 receptor knockout mouse during infection was sufficient to inhibit RSV immunopathogenesis (i.e., airway hyperresponsiveness, Th2 inflammation, eosinophilia, and mucus hyperproduction); whereas administration of IL-33 to adult mice during RSV infection was sufficient to induce RSV disease. Additionally, elevated IL-33 and IL-13 were observed in nasal aspirates from infants hospitalized with RSV; these cytokines declined during convalescence. In summary, IL-33 is necessary, either directly or indirectly, to induce ILC2s and the Th2 biased immunopathophysiology observed following neonatal RSV infection. This study provides a mechanism involving IL-33 and ILC2s in RSV mediated human asthma.

Selective and reversible suppression of intestinal stem cell differentiation by pharmacological inhibition of BET bromodomains.

Sci Rep.

2016 Feb 09

Nakagawa A, Adams CE, Huang Y, Hamarneh SR, Liu W, Von Alt KN, Mino-Kenudson M, Hodin RA, Lillemoe KD, Fernández-Del Castillo C, Warshaw AL, Liss AS.
PMID: 26856877 | DOI: 10.1038/srep20390

Absorptive and secretory cells of the small intestine are derived from a single population of Lgr5-expressing stem cells. While key genetic pathways required for differentiation into specific lineages have been defined, epigenetic programs contributing to this process remain poorly characterized. Members of the BET family of chromatin adaptors contain tandem bromodomains that mediate binding to acetylated lysines on target proteins to regulate gene expression. In this study, we demonstrate that mice treated with a small molecule inhibitor of BET bromodomains, CPI203, exhibit greater than 90% decrease in tuft and enteroendocrine cells in both crypts and villi of the small intestine, with no changes observed in goblet or Paneth cells. BET bromodomain inhibition did not alter the abundance of Lgr5-expressing stem cells in crypts, but rather exerted its effects on intermediate progenitors, in part through regulation of Ngn3 expression. When BET bromodomain inhibition was combined with the chemotherapeutic gemcitabine, pervasive apoptosis was observed in intestinal crypts, revealing an important role for BET bromodomain activity in intestinal homeostasis. Pharmacological targeting of BET bromodomains defines a novel pathway required for tuft and enteroendocrine differentiation and provides an important tool to further dissect the progression from stem cell to terminally differentiated secretory cell.

Pages

  • « first
  • ‹ previous
  • …
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?