Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (5)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • HPV E6/E7 (30) Apply HPV E6/E7 filter
  • Lgr5 (20) Apply Lgr5 filter
  • PD-L1 (9) Apply PD-L1 filter
  • Axin2 (6) Apply Axin2 filter
  • FGFR1 (6) Apply FGFR1 filter
  • IFN-γ (5) Apply IFN-γ filter
  • (-) Remove HER2 filter HER2 (5)
  • OLFM4 (5) Apply OLFM4 filter
  • MALAT1 (4) Apply MALAT1 filter
  • Wnt4 (4) Apply Wnt4 filter
  • Wnt5a (4) Apply Wnt5a filter
  • MYC (4) Apply MYC filter
  • OLFM4 (4) Apply OLFM4 filter
  • PTEN (4) Apply PTEN filter
  • TERT (4) Apply TERT filter
  • TNF-α (4) Apply TNF-α filter
  • TGF-β (4) Apply TGF-β filter
  • IL-17A (4) Apply IL-17A filter
  • HPV (4) Apply HPV filter
  • AR-V7 (4) Apply AR-V7 filter
  • Wnt7a (3) Apply Wnt7a filter
  • AR (3) Apply AR filter
  • BRCA1 (3) Apply BRCA1 filter
  • MET (3) Apply MET filter
  • CXCL10 (3) Apply CXCL10 filter
  • HEY2 (3) Apply HEY2 filter
  • HOTAIR (3) Apply HOTAIR filter
  • IL-10 (3) Apply IL-10 filter
  • H19 (3) Apply H19 filter
  • HIV (3) Apply HIV filter
  • Lgr4 (3) Apply Lgr4 filter
  • COL11A1 (3) Apply COL11A1 filter
  • ASPM (3) Apply ASPM filter
  • IL-8 (3) Apply IL-8 filter
  • VEGF (3) Apply VEGF filter
  • Il-6 (3) Apply Il-6 filter
  • MERS-CoV (3) Apply MERS-CoV filter
  • HPV HR7 (3) Apply HPV HR7 filter
  • LINC00473 (3) Apply LINC00473 filter
  • PD-l2 (3) Apply PD-l2 filter
  • HIV-1 (3) Apply HIV-1 filter
  • TNFA (3) Apply TNFA filter
  • CD274 (2) Apply CD274 filter
  • TGFB1 (2) Apply TGFB1 filter
  • Wnt10a (2) Apply Wnt10a filter
  • Wnt10b (2) Apply Wnt10b filter
  • Wnt16 (2) Apply Wnt16 filter
  • Wnt1 (2) Apply Wnt1 filter
  • Wnt6 (2) Apply Wnt6 filter
  • Wnt7b (2) Apply Wnt7b filter

Product

  • (-) Remove RNAscope 2.0 Assay filter RNAscope 2.0 Assay (5)

Research area

  • Cancer (5) Apply Cancer filter

Category

  • Publications (5) Apply Publications filter
In situ analysis of HER2 mRNA in gastric carcinoma: comparison with fluorescence in situ hybridization, dual-color silver in situ hybridization, and immunohistochemistry. 

Human pathology, 44(4):487–94.

Kim MA, Jung JE, Lee HE, Yang HK, Kim WH (2013)
PMID: 23084583 | DOI: 10.1016/j.humpath.2012.06.022.

The importance of anti-HER2 therapy has focused attention on the ability of clinical assays to correctly assign HER2 amplification status. In the present study, we evaluated HER2 mRNA expression using a new mRNA in situ detection technique called RNAscope in 211 cases of formalin-fixed, paraffin-embedded gastric carcinoma. In addition, we compared the results with the conventional methods of immunohistochemistry, fluorescence in situ hybridization, and dual-color silver in situ hybridization. RNA in situ hybridization (in situ hybridization) showed that 162 cases (76.8%) were score 0, 5 cases (2.4%) were score 1, 10 cases (4.7%) were score 2, 13 cases (6.2%) were score 3, and 21 cases (10.0%) were score 4. HER2 transcription levels were found to be significantly related to pT class, pN class, and tumor recurrence. mRNA expression was well correlated with protein overexpression and gene amplification; 20 cases out of 23 with DNA amplification showed a score of 4 in RNA in situ hybridization (P < .001). Three cases showed false negative and one case showed false positive results by in situ hybridization. More studies are needed to determine whether the in situ hybridization method can identify additional patients that may benefit from anti-HER2 therapy or exclude those who may be resistant to anti-HER2 therapy.
HER2 Status in Colorectal Cancer: Its Clinical Significance and the Relationship between HER2 Gene Amplification and Expression.

PLoS One. 2014 May 30;9(5):e98528.

Seo AN, Kwak Y, Kim DW, Kang SB, Choe G, Kim WH, Lee HS.
PMID: 24879338 | DOI: 10.1371/journal.pone.0098528

This study aimed at determining the incidence and clinical implications of HER2 status in primary colorectal cancer (CRC). HER2 status was investigated in two retrospective cohorts of 365 consecutive CRC patients (cohort 1) and 174 advanced CRC patients with synchronous or metachronous distant metastasis (cohort 2). HER2 status was determined by performing dual-color silver in-situ hybridization (SISH), mRNA in-situ hybridization (ISH), and immunohistochemistry (IHC). The incidence of HER2 protein overexpression (IHC 2+/3+) was approximately 6% (22 of 365 in cohort 1; 10 of 174 in cohort 2). HER2 gene amplification was observed in 5.8% of the patients from cohort 1 and 6.3% of the patients from cohort 2. HER2 gene amplification was more frequently observed in CRCs located in the rectum than in the right and left colon (P = 0.013 in cohort 1; P = 0.009 in cohort 2). HER2 status, determined by IHC, ISH, and dual-color SISH, was not significantly associated with aggressive CRC behaviour or patients' prognosis in both the cohorts. Of the combined cohort with a total of 539 cases, the concordance rate was 95.5% between dual-color SISH and IHC detection methods. On excluding equivocally immunostained cases (IHC 2+), the concordance rate was 97.7%. HER2 mRNA overtranscription, detected by ISH, significantly correlated with protein overexpression and gene amplification (P<0.001). HER2 gene amplification was identified in a minority of CRC patients with high concordance rates between dual-color SISH and IHC detection methods. Although HER2 status did not predict patients' prognosis, our findings may serve as a basis for future studies on patient selection for HER2 targeted therapy.
"HER2免疫组织化学结果不确定的乳腺癌原位 mRNA 表达特征 HER2 mRNA expression in breast cancers with equivocal immunohistochemical results using in situ mRNA hybridization"

Chinese Journal of Pathology

2015 Nov 30

Shafei W, Yuanyuan L, Ying J, Yufeng L, Quancai C, Zhiyong L, Xuan Z.
PMID: - | DOI: -

Objective:
To investigate in situ mRNA expression of HER 2 oncogene in breast cancers with equivocal immunohistochemical results , and to explore the potential feasibility of RNAscope technique in evaluating HER2 status in breast cancers .Methods Sixty-nine FFPE samples of invasive ductal breast cancer with equivocal HER 2 immunohistochemistry results ( IHC 2+) were collected from surgical excisions from Peking Union Medical College Hospital between June 2010 and June 2013.HER2 status and in situ mRNA expression were tested by fluorescence in situ hybridization ( FISH) and RNAscope respectively using tissue microarray constructed from tumor paraffin blocks .The results of HER2 mRNA expression were scored 0 to 4 ( from low to high levels ) according to mRNA expression in 100 cancer cells .HER2 mRNA expression was evaluated in two groups of patients , with positive and negative FISH results .Results Twenty-three of the 69 samples were FISH positive, including 16 samples that were scored 4 by RNAscope (70%,16/23), 6 samples were scored 3 ( 26%,6/23 ) and one sample was scored 2 ( 4%,1/23 ) .High in situ mRNA expression (score 4 or 3) were observed in 96%of HER2 FISH positive samples.All of samples that were scored 4 by RNAscope were FISH positive .Forty-six samples were FISH negative , including 17 samples that were scored 3 by RNAscope (37%,17/46), 25 samples were scored 2 (54%,25/46), and 4 samples were scored 1 (9%,4/46).Conclusions Breast cancer with HER2 IHC 2 +could be further classified according to in situ mRNA expression status .Among them, RNAscope score of 4 could be one of the interpretation criteria for re-testing IHC 2+samples.In situ detection of HER2 mRNA may be an additional candidate method of confirmation for HER 2 gene amplification or protein overexpression , and has potential&nbsp;clinical utility.

Enrichment and Molecular Analysis of Breast Cancer Disseminated Tumor Cells from Bone Marrow Using Microfiltration

PLoS One

2017 Jan 27

Pillai SG, Zhu P, Siddappa CM, Adams DL, Li S, Makarova OV, Amstutz P, Nunley R, Tang CM, Watson MA, Aft RL.
PMID: 28129357 | DOI: 10.1371/journal.pone.0170761

Abstract

PURPOSE:

Molecular characterization of disseminated tumor cells (DTCs) in the bone marrow (BM) of breast cancer (BC) patients has been hindered by their rarity. To enrich for these cells using an antigen-independent methodology, we have evaluated a size-based microfiltration device in combination with several downstream biomarker assays.

METHODS:

BM aspirates were collected from healthy volunteers or BC patients. Healthy BM was mixed with a specified number of BC cells to calculate recovery and fold enrichment by microfiltration. Specimens were pre-filtered using a 70 μm mesh sieve and the effluent filtered through CellSieve microfilters. Captured cells were analyzed by immunocytochemistry (ICC), FISH for HER-2/neu gene amplification status, and RNA in situ hybridization (RISH). Cells eluted from the filter were used for RNA isolation and subsequent qRT-PCR analysis for DTC biomarker gene expression.

RESULTS:

Filtering an average of 14×106 nucleated BM cells yielded approximately 17-21×103 residual BM cells. In the BC cell spiking experiments, an average of 87% (range 84-92%) of tumor cells were recovered with approximately 170- to 400-fold enrichment. Captured BC cells from patients co-stained for cytokeratin and EpCAM, but not CD45 by ICC. RNA yields from 4 ml of patient BM after filtration averaged 135ng per 10 million BM cells filtered with an average RNA Integrity Number (RIN) of 5.3. DTC-associated gene expression was detected by both qRT-PCR and RISH in filtered spiked or BC patient specimens but, not in control filtered normal BM.

CONCLUSIONS:

We have tested a microfiltration technique for enrichment of BM DTCs. DTC capture efficiency was shown to range from 84.3% to 92.1% with up to 400-fold enrichment using model BC cell lines. In patients, recovered DTCs can be identified and distinguished from normal BM cells using multiple antibody-, DNA-, and RNA-based biomarker assays.

From morphologic to molecular: established and emerging molecular diagnostics for breast carcinoma. 

New Biotechnology, 29(6), 665–681.

Portier BP, Gruver AM, Huba MA, Minca EC, Cheah AL, Wang Z, Tubbs RR (2012).
PMID: 22504737 | DOI: 10.1016/j.nbt.2012.03.011.

Diagnostics in the field of breast carcinoma are constantly evolving. The recent wave of molecular methodologies, both microscope and non-microscope based, have opened new ways to gain insight into this disease process and have moved clinical diagnostics closer to a 'personalized medicine' approach. In this review we highlight some of the advancements that laboratory medicine technology is making toward guiding the diagnosis, prognosis, and therapy selection for patients affected by breast carcinoma. The content of the article is largely structured by methodology, with a distinct emphasis on both microscope based and non-microscope based diagnostic formats. Where possible, we have attempted to emphasize the potential benefits as well as limitations to each of these technologies. Successful molecular diagnostics, applied in concert within the morphologic context of a patient's tumor, are what will lay the foundation for personalized therapy and allow a more sophisticated approach to clinical trial stratification. The future of breast cancer diagnostics looks challenging, but it is also a field of great opportunity. Never before have there been such a plethora of new tools available for disease investigation or candidate therapy selection.
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?