Cancer

Autologous T cell therapy for MAGE-A4+ solid cancers in HLA-A*02+ patients: a phase 1 trial

Affinity-optimized T cell receptors can enhance the potency of adoptive T cell therapy. Afamitresgene autoleucel (afami-cel) is a human leukocyte antigen-restricted autologous T cell therapy targeting melanoma-associated antigen A4 (MAGE-A4), a cancer/testis antigen expressed at varying levels in multiple solid tumors. We conducted a multicenter, dose-escalation, phase 1 trial in patients with relapsed/refractory metastatic solid tumors expressing MAGE-A4, including synovial sarcoma (SS), ovarian cancer and head and neck cancer ( NCT03132922 ).

Immunohistochemical Detection of 5T4 in Renal Cell Carcinoma

5T4 (trophoblast glycoprotein encoded by TPBG) is a cancer/testis antigen highly expressed in renal cell carcinoma (RCC) and many other cancers but rarely in normal tissues. Interest in developing 5T4 as a prognostic biomarker and direct targeting of 5T4 by emerging receptor-engineered cellular immunotherapies has been hampered by the lack of validated 5T4-specific reagents for immunohistochemistry (IHC). We tested 4 commercially available monoclonal antibodies (mAbs) for the detection of 5T4 in formalin-fixed, paraffin-embedded RCC and normal tissues.

Ultrasensitive detection of circulating LINE-1 ORF1p as a specific multi-cancer biomarker

Improved biomarkers are needed for early cancer detection, risk stratification, treatment selection, and monitoring treatment response. While proteins can be useful blood-based biomarkers, many have limited sensitivity or specificity for these applications. Long INterspersed Element-1 (LINE-1, L1) open reading frame 1 protein (ORF1p) is a transposable element protein overexpressed in carcinomas and high-risk precursors during carcinogenesis with negligible detectable expression in corresponding normal tissues, suggesting ORF1p could be a highly specific cancer biomarker.

Telomerase reactivation induces progression of mouse Braf V600E -driven thyroid cancers without telomere lengthening

Mutations in the promoter of the telomerase reverse transcriptase ( TERT ) gene are the paradigm of a cross-cancer alteration in a non-coding region. TERT promoter mutations (TPMs) are biomarkers of poor prognosis in several tumors, including thyroid cancers. TPMs enhance TERT transcription, which is otherwise silenced in adult tissues, thus reactivating a bona fide oncoprotein.

Combined KRAS G12C and SOS1 inhibition enhances and extends the anti-tumor response in KRAS G12C -driven cancers by addressing intrinsic and acquired resistance

Efforts to improve the anti-tumor response to KRAS G12C targeted therapy have benefited from leveraging combination approaches. Here, we compare the anti-tumor response induced by the SOS1-KRAS interaction inhibitor, BI-3406, combined with a KRAS G12C inhibitor (KRAS G12C i) to those induced by KRAS G12C i alone or combined with SHP2 or EGFR inhibitors. In lung cancer and colorectal cancer (CRC) models, BI-3406 plus KRAS G12C i induces an anti-tumor response stronger than that observed with KRAS G12C i alone and comparable to those by the other combinations.

Ribonucleotide Reductase Subunit Switching in Hepatoblastoma Drug Response and Relapse

Prognosis of children with high-risk hepatoblastoma (HB), the most common pediatric liver cancer, remains poor. In this study, we found ribonucleotide reductase (RNR) subunit M2 ( RRM2 ) was one of the key genes supporting cell proliferation in high-risk HB. While standard chemotherapies could effectively suppress RRM2 in HB cells, they induced a significant upregulation of the other RNR M2 subunit, RRM2B .

FAK loss reduces BRAFV600E-induced ERK phosphorylation to promote intestinal stemness and cecal tumor formation

BRAFV600E mutation is a driver mutation in the serrated pathway to colorectal cancers. BRAFV600E drives tumorigenesis through constitutive downstream extracellular signal-regulated kinase (ERK) activation, but high-intensity ERK activation can also trigger tumor suppression. Whether and how oncogenic ERK signaling can be intrinsically adjusted to a "just-right" level optimal for tumorigenesis remains undetermined. In this study, we found that FAK (Focal adhesion kinase) expression was reduced in BRAFV600E-mutant adenomas/polyps in mice and patients.

Endothelial Indoleamine-2,3-Dioxygenase-1 is not Critically Involved in Regulating Antitumor Immunity in the Central Nervous System

The vascular niche of malignant gliomas is a key compartment that shapes the immunosuppressive brain tumor microenvironment (TME). The blood-brain-barrier (BBB) consisting of specialized endothelial cells (ECs) and perivascular cells forms a tight anatomical and functional barrier critically controlling transmigration and effector function of immune cells. During neuroinflammation and tumor progression, the metabolism of the essential amino acid tryptophan (Trp) to metabolites such as kynurenine has long been identified as an important metabolic pathway suppressing immune responses.

Oncogenic Kras G12D specific non-covalent inhibitor reprograms tumor microenvironment to prevent and reverse early pre-neoplastic pancreatic lesions and in combination with immunotherapy regresses advanced PDAC in a CD8 + T cells dependent manner

Pancreatic ductal adenocarcinoma (PDAC) is associated with mutations in Kras, a known oncogenic driver of PDAC; and the KRAS G12D mutation is present in nearly half of PDAC patients. Recently, a non-covalent small molecule inhibitor (MRTX1133) was identified with specificity to the Kras G12D mutant protein. Here we explore the impact of Kras G12D inhibition by MRTX1133 on advanced PDAC and its influence on the tumor microenvironment.

Epstein-Barr Virus and the Pathogenesis of Diffuse Large B-Cell Lymphoma

Epstein-Barr virus (EBV), defined as a group I carcinogen by the World Health Organization (WHO), is present in the tumour cells of patients with different forms of B-cell lymphoma, including Burkitt lymphoma, Hodgkin lymphoma, post-transplant lymphoproliferative disorders, and, most recently, diffuse large B-cell lymphoma (DLBCL). Understanding how EBV contributes to the development of these different types of B-cell lymphoma has not only provided fundamental insights into the underlying mechanisms of viral oncogenesis, but has also highlighted potential new therapeutic opportunities.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com