Cancer

T cell-dependent bispecific antibodies alter organ-specific endothelial cell-T cell interaction

Preclinical and clinical studies demonstrate that T cell-dependent bispecific antibodies (TDBs) induce systemic changes in addition to tumor killing, leading to adverse events. Here, we report an in-depth characterization of acute responses to TDBs in tumor-bearing mice. Contrary to modest changes in tumors, rapid and substantial lymphocyte accumulation and endothelial cell (EC) activation occur around large blood vessels in normal organs including the liver.

Human papillomavirus status and prognosis of oropharyngeal high-grade neuroendocrine carcinoma

The prognostic impact of human papillomavirus (HPV) infection or smoking on oropharyngeal high-grade neuroendocrine carcinoma (HG-NEC) is not established.Retrospective study with patients with oropharyngeal HG-NEC seen at MD Anderson Cancer Center from 1997 to 2020, and previously reported patients with oropharyngeal HG-NEC and known p16 and HPV status from the literature review.

VGLL2-NCOA2 leverages developmental programs for pediatric sarcomagenesis

Clinical sequencing efforts are rapidly identifying sarcoma gene fusions that lack functional validation. An example is the fusion of transcriptional coactivators, VGLL2-NCOA2, found in infantile rhabdomyosarcoma. To delineate VGLL2-NCOA2 tumorigenic mechanisms and identify therapeutic vulnerabilities, we implement a cross-species comparative oncology approach with zebrafish, mouse allograft, and patient samples. We find that VGLL2-NCOA2 is sufficient to generate mesenchymal tumors that display features of immature skeletal muscle and recapitulate the human disease.

Single-cell high-dimensional imaging mass cytometry: one step beyond in oncology

Solid tumors have a dynamic ecosystem in which malignant and non-malignant (endothelial, stromal, and immune) cell types constantly interact. Importantly, the abundance, localization, and functional orientation of each cell component within the tumor microenvironment vary significantly over time and in response to treatment. Such intratumoral heterogeneity influences the tumor course and its sensitivity to treatments. Recently, high-dimensional imaging mass cytometry (IMC) has been developed to explore the tumor ecosystem at the single-cell level.

Endothelial TFEB signaling-mediated autophagic disturbance initiates microglial activation and cognitive dysfunction

Cognitive impairment caused by systemic chemotherapy is a critical question that perplexes the effective implementation of clinical treatment, but related molecular events are poorly understood. Herein, we show that bortezomib exposure leads to microglia activation and cognitive impairment, this occurs along with decreased nuclear translocation of TFEB (transcription factor EB), which is linked to macroautophagy/autophagy disorder, STAT3 (signal transducer and activator of transcription 3) phosphorylation and IL23A (interleukin 23 subunit alpha) expression.

Allogeneic CAR T Cells Targeting DLL3 Are Efficacious and Safe in Preclinical Models of Small Cell Lung Cancer

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options. Delta-like ligand 3 (DLL3) is highly expressed on SCLC and several other types of neuroendocrine cancers, with limited normal tissue RNA expression in brain, pituitary, and testis, making it a promising CAR T-cell target for SCLC and other solid tumor indications.A large panel of anti-DLL3 scFv-based CARs were characterized for both in vitro and in vivo activity.

LncRNA LIMp27 Regulates the DNA Damage Response through p27 in p53-Defective Cancer Cells

P53 inactivation occurs in about 50% of human cancers, where p53-driven p21 activity is devoid and p27 becomes essential for the establishment of the G1/S checkpoint upon DNA damage. Here, this work shows that the E2F1-responsive lncRNA LIMp27 selectively represses p27 expression and contributes to proliferation, tumorigenicity, and treatment resistance in p53-defective colon adenocarcinoma (COAD) cells. LIMp27 competes with p27 mRNA for binding to cytoplasmically localized hnRNA0, which otherwise stabilizes p27 mRNA leading to cell cycle arrest at the G0/G1 phase.

CD8+ T cell-intrinsic IL-6 signaling promotes resistance to anti-PD-L1 immunotherapy

Although immune checkpoint inhibitors (ICIs) are established as effective cancer therapies, overcoming therapeutic resistance remains a critical challenge. Here we identify interleukin 6 (IL-6) as a correlate of poor response to atezolizumab (anti-PD-L1) in large clinical trials of advanced kidney, breast, and bladder cancers. In pre-clinical models, combined blockade of PD-L1 and the IL-6 receptor (IL6R) causes synergistic regression of large established tumors and substantially improves anti-tumor CD8+ cytotoxic T lymphocyte (CTL) responses compared with anti-PD-L1 alone.

MHC class II-restricted antigen presentation is required to prevent dysfunction of cytotoxic T cells by blood-borne myeloids in brain tumors

Cancer immunotherapy critically depends on fitness of cytotoxic and helper T cell responses. Dysfunctional cytotoxic T cell states in the tumor microenvironment (TME) are a major cause of resistance to immunotherapy. Intratumoral myeloid cells, particularly blood-borne myeloids (bbm), are key drivers of T cell dysfunction in the TME. We show here that major histocompatibility complex class II (MHCII)-restricted antigen presentation on bbm is essential to control the growth of brain tumors.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com