Cancer

Loss of SUV420H2-dependent chromatin compaction drives right-sided colon cancer progression

Epigenetic processes regulating gene expression contribute markedly to epithelial cell plasticity in colorectal carcinogenesis. The lysine methyltransferase SUV420H2 comprises an important regulator of epithelial plasticity and is primarily responsible for trimethylation of H4K20 (H4K20me3). Loss of H4K20me3 has been suggested as a hallmark of human cancer due to its interaction with DNMT1. However, the role of Suv4-20h2 in colorectal cancer is unknown.We examined the alterations in histone modifications in patient-derived colorectal cancer organoids.

Cancer immunotherapies transition endothelial cells into HEVs that generate TCF1+ T lymphocyte niches through a feed-forward loop

The lack of T cell infiltrates is a major obstacle to effective immunotherapy in cancer. Conversely, the formation of tumor-associated tertiary-lymphoid-like structures (TA-TLLSs), which are the local site of humoral and cellular immune responses against cancers, is associated with good prognosis, and they have recently been detected in immune checkpoint blockade (ICB)-responding patients. However, how these lymphoid aggregates develop remains poorly understood.

Metastatic recurrence in colorectal cancer arises from residual EMP1 cells

Around 30-40% of patients with colorectal cancer (CRC) undergoing curative resection of the primary tumour will develop metastases in the subsequent years<sup>1</sup>. Therapies to prevent disease relapse remain an unmet medical need. Here we uncover the identity and features of the residual tumour cells responsible for CRC relapse. An analysis of single-cell transcriptomes of samples from patients with CRC revealed that the majority of genes associated with a poor prognosis are expressed by a unique tumour cell population that we named high-relapse cells (HRCs).

Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer

The tumour-associated microbiota is an intrinsic component of the tumour microenvironment across human cancer types1,2. Intratumoral host-microbiota studies have so far largely relied on bulk tissue analysis1-3, which obscures the spatial distribution and localized effect of the microbiota within tumours. Here, by applying in situ spatial-profiling technologies4 and single-cell RNA sequencing5 to oral squamous cell carcinoma and colorectal cancer, we reveal spatial, cellular and molecular host-microbe interactions.

The Distinctive Nature of Thyroid MALT Lymphomas Including IRTA1 Expression

Mucosa-associated lymphoid tissue (MALT) lymphomas often express IgM and IRTA1 with only a minority demonstrating plasmacytic differentiation. However, like primary cutaneous marginal zone lymphoproliferative disorders (PCMZLPD), thyroid MALT lymphomas (T-MALT-L) frequently show plasmacytic differentiation and IgG positivity. Whether T-MALT-L share other features with PCMZLPD, including frequent IgG4 positivity and infrequent IRTA1 expression, and how IRTA1 staining compares to that in Hashimoto thyroiditis (HT) are unknown.

Cholangioscopic biopsy sample detection of bile duct invasion by hepatocellular carcinoma: an underappreciated entity

Background and Aims Bile duct invasion (BDI) by hepatocellular carcinoma (HCC) is rare and poorly characterized. Our aim was to elucidate clinical, cholangioscopic, and pathologic features of HCC with BDI and to compare them with features of cholangiocarcinoma (CC). Methods Seven cases of HCC with BDI (6 HCC and 1 combined HCC-CC) and 7 cases of CC diagnosed by cholangioscopic biopsy sampling between 2016 and 2020 were compared. Results The median age of HCC patients was 64 years (range, 49-77), and 6 patients were men.

Ntrk Gene Alterations Were Renriched in Hepatoid or Enteroblastic Differentiation Type of Gastric Cancer

Background: The clinicopathologic profile of gastric cancer (GC) harboring oncogenic NTRK alterations are still unknown. And as reported, NTRK fusion was enriched in dMMR-type colorectal cancer (CRC), whereas in gastric cancer there was no research to explore the relationship between NTRK alterations and the expression of DNA mismatch repair proteins.

In Situ Hybridization (ISH) Combined with Immunocytochemistry (ICC) Co-detection of Phosphorylated EGFR in A431 Cultured Cells

Antibodies have been commonly used to study protein phosphorylation since the first phospho-specific antibody was described in 1981. Antibodies can be developed so that they specifically recognize phosphorylated areas of particular proteins. In situ hybridization (ISH) is the technique where specific RNA or DNA molecules can be detected in a single cell without the need for antibodies.

In Situ Hybridization (ISH) Combined with Immunohistochemistry (IHC) for Co-detection of EGFR RNA and Phosphorylated EGFR Protein in Lung Cancer Tissue

Detection of phosphorylated proteins in tissue sections using immunohistochemistry (IHC) is a challenging task. The absence of tissue staining may be caused by either a lack of protein expression or a lack of protein activation via its phosphorylation. To address this problem, we employed Integrated Co-detection Workflow (ICW) protocol to analyze lung cancer tissue sections by combining in situ hybridization (ISH) with IHC.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com