Cancer

Discovery and Validation of Clinically Relevant Long Non-Coding RNAs in Colorectal Cancer

Colorectal cancer (CRC) is the third most prevalent cancer worldwide, with nearly two million newly diagnosed cases each year. The survival of patients with CRC greatly depends on the cancer stage at the time of diagnosis, with worse prognosis for more advanced cases. Consequently, considerable effort has been directed towards improving population screening programs for early diagnosis and identifying prognostic markers that can better inform treatment strategies.

The glioblastoma multiforme tumor site promotes the commitment of tumor-infiltrating lymphocytes to the TH17 lineage in humans

Although glioblastoma multiforme (GBM) is not an invariably cold tumor, checkpoint inhibition has largely failed in GBM. In order to investigate T cell-intrinsic properties that contribute to the resistance of GBM to endogenous or therapeutically enhanced adaptive immune responses, we sorted CD4+ and CD8+ T cells from the peripheral blood, normal-appearing brain tissue, and tumor bed of nine treatment-naive patients with GBM. Bulk RNA sequencing of highly pure T cell populations from these different compartments was used to obtain deep transcriptomes of tumor-infiltrating T cells (TILs).

Systematic comparison of pancreatic ductal adenocarcinoma models identifies a conserved highly plastic basal cell state

Intra-tumoral heterogeneity and cellular plasticity have emerged as hallmarks of cancer, including pancreatic ductal adenocarcinoma (PDAC). As PDAC portends a dire prognosis, a better understanding of the mechanisms underpinning cellular diversity in PDAC is crucial. Here, we investigated the cellular heterogeneity of PDAC cancer cells across a range of in vitro and in vivo growth conditions using single-cell genomics. Heterogeneity contracted significantly in 2D and 3D cell culture models but was restored upon orthotopic transplantation.

Molecular profiling of human non-small cell lung cancer by single-cell RNA-seq

Lung cancer, one of the most common malignant tumors, exhibits high inter- and intra-tumor heterogeneity which contributes significantly to treatment resistance and failure. Single-cell RNA sequencing (scRNA-seq) has been widely used to dissect the cellular composition and characterize the molecular properties of cancer cells and their tumor microenvironment in lung cancer.

APAF1-Binding Long Noncoding RNA Promotes Tumor Growth and Multidrug Resistance in Gastric Cancer by Blocking Apoptosome Assembly

Chemotherapeutics remain the first choice for advanced gastric cancers (GCs). However, drug resistance and unavoidable severe toxicity lead to chemotherapy failure and poor prognosis. Long noncoding RNAs (lncRNAs) play critical roles in tumor progression in many cancers, including GC. Here, through RNA screening, an apoptotic protease-activating factor 1 (APAF1)-binding lncRNA (ABL) that is significantly elevated in cancerous GC tissues and an independent prognostic factor for GC patients is identified.

TIGIT blockade elicits potent anti-tumor immunity in naturally occurring hepatitis B virus-related hepatocellular carcinoma in mice

Chronic hepatitis B virus (HBV) infection is the leading cause of hepatocellular carcinoma (HCC) and is a serious health problem in China, East Asia, and North African countries. Effective treatment of HBV-related HCC is currently unavailable. This study evaluated the therapeutic potential of TIGIT blockade in HBV-related HCC.A mouse model of spontaneous HBV-related HCC was generated by replacing wild-type hepatocytes with HBsAg+ hepatocytes (namely HBs-HepR mice).

Influence of standardization of human papillomavirus diagnosis in head and neck cancer treatment

The presence of human papillomavirus (HPV) in patients with head and neck squamous cell carcinoma (HNSCC) can guide medical management. The aim of this study was to highlight the importance of HPV diagnosis, verifying which diagnostic techniques are most used in identifying HPV and the differences between these techniques, in the research aimed at establishing a consensus on the gold standard method. We verify that HPV infection is associated with the development of HNSCC.

Integrated multi-omics reveals cellular and molecular interactions governing the invasive niche of basal cell carcinoma

Tumors invade the surrounding tissues to progress, but the heterogeneity of cell types at the tumor-stroma interface and the complexity of their potential interactions hampered mechanistic insight required for efficient therapeutic targeting. Here, combining single-cell and spatial transcriptomics on human basal cell carcinomas, we define the cellular contributors of tumor progression. In the invasive niche, tumor cells exhibit a collective migration phenotype, characterized by the expression of cell-cell junction complexes.

Single-cell analysis of hepatoblastoma identifies tumor signatures that predict chemotherapy susceptibility using patient-specific tumor spheroids

Pediatric hepatoblastoma is the most common primary liver cancer in infants and children. Studies of hepatoblastoma that focus exclusively on tumor cells demonstrate sparse somatic mutations and a common cell of origin, the hepatoblast, across patients. In contrast to the homogeneity these studies would suggest, hepatoblastoma tumors have a high degree of heterogeneity that can portend poor prognosis.

Midkine expression by stem-like tumor cells drives persistence to mTOR inhibition and an immune-suppressive microenvironment

mTORC1 is hyperactive in multiple cancer types1,2. Here, we performed integrative analysis of single cell transcriptomic profiling, paired T cell receptor (TCR) sequencing, and spatial transcriptomic profiling on Tuberous Sclerosis Complex (TSC) associated tumors with mTORC1 hyperactivity, and identified a stem-like tumor cell state (SLS) linked to T cell dysfunction via tumor-modulated immunosuppressive macrophages.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com