Cancer

hsa_circ_0092339 acts as a molecular sponge in castration-resistant prostate cancer via the hsa-mir-940/C-MYC axis

Aims: We aimed to determine whether intronic circRNA acts as a molecular sponge in castration-resistant prostate cancer (CRPC). Materials & methods: A gene chip technique was used to conduct sequencing. A qPCR experiment was performed to verify the result. Radioimmunoprecipitation, RNA pull-down and dual-luciferase reporter assays were performed to particularly expound its function. Verification of downstream effects was carried out through qPCR and western blot, and a xenograft assay was performed in vivo for verification.

Combinatorial Gli activity directs immune infiltration and tumor growth in pancreatic cancer

Proper Hedgehog (HH) signaling is essential for embryonic development, while aberrant HH signaling drives pediatric and adult cancers. HH signaling is frequently dysregulated in pancreatic cancer, yet its role remains controversial, with both tumor-promoting and tumor-restraining functions reported. Notably, the GLI family of HH transcription factors (GLI1, GLI2, GLI3), remain largely unexplored in pancreatic cancer. We therefore investigated the individual and combined contributions of GLI1-3 to pancreatic cancer progression.

Detection of Human Papillomavirus in Squamous Lesions of the Conjunctiva Using RNA and DNA In-Situ Hybridization

In-situ hybridization provides a convenient and reliable method to detect human papillomavirus (HPV) infection in formalin-fixed paraffin-embedded tissue. Cases of conjunctival papillomas, conjunctival intraepithelial neoplasia (CIN), conjunctival carcinoma in situ (cCIS), and invasive squamous cell carcinoma (SCC), in which low-risk (LR) and/or high-risk (HR) HPV types were evaluated by RNA or DNA in-situ hybridization, were retrospectively identified.

The different prognostic significance of polysialic acid and CD56 expression in tumor cells and lymphocytes identified in breast cancer

Protein glycosylation, the attachment of carbohydrates onto proteins, is a fundamental process that alters the biological activity of proteins. Changes to glycosylation states are associated with many forms of cancer including breast cancer. Through immunohistological analysis of breast cancer patient tumors, we have discovered the expression of an atypical glycan-polysialic acid (polySia)-in breast cancer.

Vascular Remodeling Is a Crucial Event in the Early Phase of Hepatocarcinogenesis in Rodent Models for Liver Tumorigenesis

The investigation of hepatocarcinogenesis is a major field of interest in oncology research and rodent models are commonly used to unravel the pathophysiology of onset and progression of hepatocellular carcinoma. HCC is a highly vascularized tumor and vascular remodeling is one of the hallmarks of tumor progression. To date, only a few detailed data exist about the vasculature and vascular remodeling in rodent models used for hepatocarcinogenesis.

Spatial expression of the FGFR2b splice isoform and its prognostic significance in endometrioid endometrial carcinoma

Endometrial carcinoma (EC) is the most common gynecological malignancy and fibroblast growth factor receptor 2 (FGFR2) is a frequently dysregulated receptor tyrosine kinase. FGFR2b and FGFR2c are the two main splice isoforms of FGFR2 and are normally localized in epithelial and mesenchymal cells, respectively. Previously, we demonstrated that FGFR2c mRNA expression was associated with aggressive tumor characteristics, shorter progression-free survival (PFS), and disease-specific survival (DSS) in endometrioid ECs (EECs).

CXCL8 expression is associated with advanced stage, right sidedness, and distinct histological features of colorectal cancer

CXCL8 is an inflammatory chemokine elevated in the colorectal cancer (CRC) tumour microenvironment. CXCR2, the major receptor for CXCL8, is predominantly expressed by neutrophils. In the cancer setting, CXCL8 plays important roles in neutrophil chemotaxis, facilitating angiogenesis, invasion, and metastasis. This study aimed to assess the spatial distribution of CXCL8 mRNA expression in CRC specimens, explore associations with clinical characteristics, and investigate the underlying biology of aberrant CXCL8 levels.

PD-1/PD-L1 Pathway: A Therapeutic Target in CD30+ Large Cell Lymphomas

The programmed death-ligands, PD-L1 and PD-L2, reside on tumor cells and can bind with programmed death-1 protein (PD-1) on T-cells, resulting in tumor immune escape. PD-1 ligands are highly expressed in some CD30+ large cell lymphomas, including classic Hodgkin lymphoma (CHL), primary mediastinal large B-cell lymphoma (PMBL), Epstein-Barr virus (EBV)-positive diffuse large B-cell lymphoma (EBV+ DLBCL), and anaplastic large cell lymphoma (ALCL).

Differential epithelial and stromal LGR5 expression in ovarian carcinogenesis

Lgr5 has been identified as a marker of the stem/progenitor cells in the murine ovary and oviduct by lineage tracing. However, little is known regarding LGR5 expression or its functional significance in human ovary tissues. Here, using RNA in situ hybridization and/or immunohistochemistry, we thoroughly investigated LGR5 expression in normal human ovaries, fallopian tubes and various ovarian tumors. We discovered that LGR5 expression is negligible in the human ovary surface epithelium, whereas ovarian stromal cells normally express low levels of LGR5.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com