Cancer

Quercetin targets hnRNPA1 to overcome enzalutamide resistance in prostate cancer cells.

Prostate cancer remains dependent on androgen receptor signaling even after castration. Aberrant androgen receptor signaling in castration resistant prostate cancer is mediated by mechanisms such as alterations in the androgen receptor and activation of interacting signaling pathways.

ErbB activation signatures as potential biomarkers for anti-ErbB3 treatment in HNSCC

Head and neck squamous cell carcinoma (HNSCC) accounts for 3-5% of all tumor types and remains an unmet medical need with only two targeted therapies approved to date. ErbB3 (HER3), the kinase-impaired member of the EGFR/ErbB family, has been implicated as a disease driver in a number of solid tumors, including a subset of HNSCC.

Molecular Effects of Stromal Selective Targeting by uPAR Retargeted Oncolytic Virus in Breast Cancer

The tumor microenvironment (TME) is a relevant target for novel biological therapies. MV-m-uPA and MV-h-uPA are fully retargeted, species-specific, oncolytic measles viruses (MVs) directed against murine or human urokinase receptor (PLAUR/uPAR), expressed in tumor and stromal cells. The effects of stromal selective targeting by uPAR retargeted MVs were investigated.

Tumor matrix stiffness promotes metastatic cancer cell interaction with the endothelium.

Tumor progression alters the composition and physical properties of the extracellular matrix. Particularly, increased matrix stiffness has profound effects on tumor growth and metastasis. While endothelial cells are key players in cancer progression, the influence of tumor stiffness on the endothelium and the impact on metastasis is unknown. Through quantitative mass spectrometry, we find that the matricellular protein CCN1/CYR61 is highly regulated by stiffness in endothelial cells.

Conditional abrogation of Transforming Growth Factor Beta Receptor 1 in PTEN-inactivated endometrium promotes endometrial cancer progression in mice.

Although a putative role for TGF beta (TGFB) signaling in the pathogenesis of human endometrial cancer has long been proposed, the precise function of TGFB signaling in the development and progression of endometrial cancer remains elusive. Depletion of PTEN in the mouse uterus causes endometrial cancer.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com