Cancer

Detection of MET mRNA in gastric cancer in situ. Comparison with immunohistochemistry and sandwich immunoassays

Determination of predictive biomarkers by immunohistochemistry (IHC) relies on antibodies with high selectivity. RNA in situ hybridization (RNA ISH) may be used to confirm IHC and may potentially replace it if suitable antibodies are not available or are insufficiently selective to discriminate closely related protein isoforms. We validated RNA ISH as specificity control for IHC and as a potential alternative method for selecting patients for treatment with MET inhibitors.

Expression of ASPM in colonic adenocarcinoma and its clinicopathologic significance

 Background: ASPM is a newly reported stem cell marker and plays important roles in mitosis, cell cycle and tumorigenesis. It links with poor clinical prognosis in various tumors. However, the clinical significance of ASPM in colonic adenocarcinoma (CA) has not been fully studied. The purpose of this study was to investigate if ASPM is correlated with the clinicopathological features of CA. Methods: Primary CA tissue, adenoma and the matched normal mucosa from 99 patients, were detected using immunohistochemical analysis by primary antibodies against ASPM.

Histone methyltransferase SETD2 modulates alternative splicing to inhibit intestinal tumorigenesis

The histone H3K36 methyltransferase SETD2 is frequently mutated or deleted in a variety of human tumors. Nevertheless, the role of SETD2 loss in oncogenesis remains largely undefined.

Carcinoma of the Urethra

Primary carcinomas of the urethra are rare and poorly understood lesions, hence their clinical and pathologic spectrum is not completely defined. We analyzed a series of 130 primary urethral tumors and classified 106 of them as primary urethral carcinomas. The age at diagnosis of patients with primary urethral carcinomas ranged from 42-97years (mean: 69.4yrs.; median: 70yrs). There were 73 males and 33 female patients with a ratio of 2.2:1.

MTG16 is a tumor suppressor in colitis-associated carcinoma

MTG16 is a member of the myeloid translocation gene (MTG) family of transcriptional corepressors. While MTGs were originally identified in chromosomal translocations in acute myeloid leukemia, recent studies have uncovered a role in intestinal biology.

Automated RNA In Situ Hybridization for 18 High Risk Human Papilloma Viruses in Squamous Cell Carcinoma of the Head and Neck: Comparison With p16 Immunohistochemistry.

Detection of human papilloma virus (HPV)-related head and neck squamous cell carcinoma (HNSCC) is important, as HPV-associated HNSCCs respond better to therapy. The RNAscope HPV-test is a novel RNA in situ hybridization (ISH) technique which strongly stains transcripts of E6 and E7 mRNA in formalin-fixed, paraffin-embedded tissue, with the potential to replace the indirect immunohistochemical (IHC) marker for p16 protein.

In vivo genetic cell lineage tracing reveals that oviductal secretory cells self-renew and give rise to ciliated cells.

The epithelial lining of the Fallopian tube is vital for fertility, providing nutrition to gametes, and facilitating their transport. It is composed of two major cell types: secretory cells and ciliated cells. Interestingly, human ovarian cancer precursor lesions are primarily consisting of secretory cells. It is unclear why secretory cells are the dominant cell type in these lesions.

Amplification of EGFR and cyclin D1 genes associated with human papillomavirus infection in oral squamous cell carcinoma.

Human papillomavirus (HPV) infection is associated with several genetic alterations including oncogene amplification, leading to increased aggression of tumors. Recently, a relationship between HPV infection and oncogene amplification has been reported, but this finding remains controversial.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com