Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for LONG

ACD can configure probes for the various manual and automated assays for LONG for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

ACD’s data images for Long gene.

  • RNA expression of long gene in Human Colorectal cancer sample using RNAscope™ 2.5 HD Assay Brown

  • RNA expression of long gene in Human Gastric cancer sample using RNAscope™ 2.5 HD Assay Brown

  • RNA expression of long gene in Human Glioma sample using RNAscope™ 2.5 HD Assay Brown

  • RNA expression of long gene in Human Lung cancer sample using RNAscope™ 2.5 HD Assay Brown

  • RNA expression of long gene in Human ovarian cancer sample using RNAscope™ 2.5 HD Assay Brown

  • Expression of long in Human Prostate cancer sample using RNAscope™ 2.5 HD Assay Brown

  • Probes for Long (25732)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (368)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (57) Apply TBD filter
  • MALAT1 (13) Apply MALAT1 filter
  • H19 (7) Apply H19 filter
  • SARS-CoV-2 (7) Apply SARS-CoV-2 filter
  • HOTAIR (6) Apply HOTAIR filter
  • Neat1 (4) Apply Neat1 filter
  • Slc17a6 (4) Apply Slc17a6 filter
  • Slc17a7 (4) Apply Slc17a7 filter
  • SChLAP1 (4) Apply SChLAP1 filter
  • MEG3 (3) Apply MEG3 filter
  • Gad1 (3) Apply Gad1 filter
  • MMP13 (3) Apply MMP13 filter
  • GFAP (3) Apply GFAP filter
  • PVT1 (3) Apply PVT1 filter
  • Col2a1 (3) Apply Col2a1 filter
  • col10a1 (3) Apply col10a1 filter
  • UCA1 (3) Apply UCA1 filter
  • LINC00473 (3) Apply LINC00473 filter
  • EBER1 (3) Apply EBER1 filter
  • ACTA2 (2) Apply ACTA2 filter
  • GAPDH (2) Apply GAPDH filter
  • Alpl (2) Apply Alpl filter
  • Wnt5a (2) Apply Wnt5a filter
  • ICAM1 (2) Apply ICAM1 filter
  • FOS (2) Apply FOS filter
  • GREM1 (2) Apply GREM1 filter
  • PVALB (2) Apply PVALB filter
  • Sst (2) Apply Sst filter
  • Cdh13 (2) Apply Cdh13 filter
  • PDGFRA (2) Apply PDGFRA filter
  • Gad2 (2) Apply Gad2 filter
  • BCAR4 (2) Apply BCAR4 filter
  • Chat (2) Apply Chat filter
  • CXCL12 (2) Apply CXCL12 filter
  • GAS5 (2) Apply GAS5 filter
  • Pomc (2) Apply Pomc filter
  • CARTPT (2) Apply CARTPT filter
  • Runx2 (2) Apply Runx2 filter
  • TIE1 (2) Apply TIE1 filter
  • vGlut2 (2) Apply vGlut2 filter
  • Pnky (2) Apply Pnky filter
  • PD-L1 (2) Apply PD-L1 filter
  • RAD51-AS1 (2) Apply RAD51-AS1 filter
  • LINC01133 (2) Apply LINC01133 filter
  • LINK-A (2) Apply LINK-A filter
  • LpR2 (2) Apply LpR2 filter
  • LINC00958 (2) Apply LINC00958 filter
  • Lncenc1 (2) Apply Lncenc1 filter
  • ROR (2) Apply ROR filter
  • ELDR (2) Apply ELDR filter

Product

  • RNAscope Multiplex Fluorescent Assay (56) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (47) Apply RNAscope filter
  • RNAscope 2.0 Assay (44) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Red assay (39) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Fluorescent Multiplex Assay (37) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 HD Brown Assay (24) Apply RNAscope 2.5 HD Brown Assay filter
  • BASEscope Assay RED (9) Apply BASEscope Assay RED filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (8) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.5 LS Assay (5) Apply RNAscope 2.5 LS Assay filter
  • TBD (5) Apply TBD filter
  • Basescope (3) Apply Basescope filter
  • RNAscope 2.5 HD Duplex (3) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope Multiplex Fluorescent v2 (3) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope 2.5 VS Assay (2) Apply RNAscope 2.5 VS Assay filter
  • DNAscope HD Duplex Reagent Kit (1) Apply DNAscope HD Duplex Reagent Kit filter

Research area

  • Cancer (120) Apply Cancer filter
  • lncRNA (110) Apply lncRNA filter
  • Neuroscience (74) Apply Neuroscience filter
  • LncRNAs (41) Apply LncRNAs filter
  • Development (24) Apply Development filter
  • Infectious Disease (16) Apply Infectious Disease filter
  • Inflammation (12) Apply Inflammation filter
  • Stem Cells (10) Apply Stem Cells filter
  • Covid (9) Apply Covid filter
  • Other (7) Apply Other filter
  • Bone (5) Apply Bone filter
  • Immunotherapy (4) Apply Immunotherapy filter
  • Infectious (4) Apply Infectious filter
  • Developmental (3) Apply Developmental filter
  • HPV (3) Apply HPV filter
  • Kidney (3) Apply Kidney filter
  • Pain (3) Apply Pain filter
  • Stem cell (3) Apply Stem cell filter
  • Alzheimer's Disease (2) Apply Alzheimer's Disease filter
  • Autism (2) Apply Autism filter
  • CGT (2) Apply CGT filter
  • Endocrinology (2) Apply Endocrinology filter
  • Heart (2) Apply Heart filter
  • Injury (2) Apply Injury filter
  • Long Covid (2) Apply Long Covid filter
  • Metabolism (2) Apply Metabolism filter
  • osteoarthritis (2) Apply osteoarthritis filter
  • Other: Cell Biology (2) Apply Other: Cell Biology filter
  • Age-related macular degeneration (1) Apply Age-related macular degeneration filter
  • Aging (1) Apply Aging filter
  • Circadian clock (1) Apply Circadian clock filter
  • Feeding Behavior (1) Apply Feeding Behavior filter
  • Hearing (1) Apply Hearing filter
  • HIV (1) Apply HIV filter
  • Huntington's Disease (1) Apply Huntington's Disease filter
  • Infectious Disease: Ebola virus disease (1) Apply Infectious Disease: Ebola virus disease filter
  • Influenza A (1) Apply Influenza A filter
  • Jet Leg (1) Apply Jet Leg filter
  • Lnc (1) Apply Lnc filter
  • Lung (1) Apply Lung filter
  • Metabolic (1) Apply Metabolic filter
  • MicroRNAs (1) Apply MicroRNAs filter
  • Other: Eyes (1) Apply Other: Eyes filter
  • Other: Genomics (1) Apply Other: Genomics filter
  • Other: Heart (1) Apply Other: Heart filter
  • Other: Kidney (1) Apply Other: Kidney filter
  • Other: Liver (1) Apply Other: Liver filter
  • Other: Methods (1) Apply Other: Methods filter
  • Regeneration (1) Apply Regeneration filter
  • Skin (1) Apply Skin filter

Category

  • Publications (368) Apply Publications filter
Two missense mutations in KCNQ1 cause pituitary hormone deficiency and maternally inherited gingival fibromatosis.

Nat Commun.

2017 Nov 03

Tommiska J, Känsäkoski J, Skibsbye L, Vaaralahti K, Liu X, Lodge EJ, Tang C, Yuan L, Fagerholm R, Kanters JK, Lahermo P, Kaunisto M, Keski-Filppula R, Vuoristo S, Pulli K, Ebeling T, Valanne L, Sankila EM, Kivirikko S, Lääperi M, Casoni F, Giacobini P, Ph
PMID: 29097701 | DOI: 10.1038/s41467-017-01429-z

Familial growth hormone deficiency provides an opportunity to identify new genetic causes of short stature. Here we combine linkage analysis with whole-genome resequencing in patients with growth hormone deficiency and maternally inherited gingival fibromatosis. We report that patients from three unrelated families harbor either of two missense mutations, c.347G>T p.(Arg116Leu) or c.1106C>T p.(Pro369Leu), in KCNQ1, a gene previously implicated in the long QT interval syndrome. Kcnq1 is expressed in hypothalamic GHRH neurons and pituitary somatotropes. Co-expressing KCNQ1 with the KCNE2 β-subunit shows that both KCNQ1 mutants increase current levels in patch clamp analyses and are associated with reduced pituitary hormone secretion from AtT-20 cells. In conclusion, our results reveal a role for the KCNQ1 potassium channel in the regulation of human growth, and show that growth hormone deficiency associated with maternally inherited gingival fibromatosis is an allelic disorder with cardiac arrhythmia syndromes caused by KCNQ1 mutations.

The GS-nitroxide JP4-039 improves intestinal barrier and stem cell recovery in irradiated mice

Sci Rep.

2018 Feb 01

Wei L, Leibowitz BJ, Epperly M, Bi C, Li A, Steinman J, Wipf P, Li S, Zhang L, Greenberger J, Yu J.
PMID: - | DOI: 10.1038/s41598-018-20370-9

Total body irradiation (TBI) leads to dose- and tissue-specific lethality. In the current study, we demonstrate that a mitochondrion-targeted nitroxide JP4-039 given once 24 hours after 9–10 Gy TBI significantly improves mouse survival, and the recovery of intestinal barrier, differentiation and stem cell functions. The GI-protective effects are associated with rapid and selective induction of tight junction proteins and cytokines including TGF-β, IL-10, IL-17a, IL-22 and Notch signaling long before bone marrow depletion. However, no change was observed in crypt death or the expression of prototypic pro-inflammatory cytokines such as TNF-α, IL-6 or IL-1β. Surprisingly, bone marrow transplantation (BMT) performed 24 hours after TBI improves intestinal barrier and stem cell recovery with induction of IL-10, IL-17a, IL-22, and Notch signaling. Further, BMT-rescued TBI survivors display increased intestinal permeability, impaired ISC function and proliferation, but not obvious intestinal inflammation or increased epithelial death. These findings identify intestinal epithelium as a novel target of radiation mitigation, and potential strategies to enhance ISC recovery and regeneration after accidental or medical exposures.

Antisense oligonucleotides selectively suppress target RNA in nociceptive neurons of the pain system and can ameliorate mechanical pain

Pain.

2018 Jan 01

Mohan A, Fitzsimmons B, Zhao HT, Jiang Y, Mazur C, Swayze EE, Kordasiewicz HB.
PMID: 28976422 | DOI: 10.1097/j.pain.0000000000001074

There is an urgent need for better treatments for chronic pain, which affects more than 1 billion people worldwide. Antisense oligonucleotides (ASOs) have proven successful in treating children with spinal muscular atrophy, a severe infantile neurological disorder, and several compounds based on ASOs are currently being tested in clinical trials for various neurological disorders. Here we characterize the pharmacodynamic activity of ASOs in spinal cord and dorsal root ganglia (DRG), key tissues for pain signaling. We demonstrate that the activity of ASOs lasts up to 2 months after a single intrathecal bolus dose in the spinal cord. Interestingly, comparison of subcutaneous, central intracerebroventricular and intrathecal administration shows DRGs are targetable by systemic and central delivery of ASOs, while target reduction in the spinal cord is achieved only after direct central delivery. Upon detailed characterization of ASO activity in individual cell populations in DRG, we observe robust target suppression in all neuronal populations thereby establishing that ASOs are effective in the cell populations involved in pain propagation. Furthermore, we confirm that ASOs are selective and do not modulate basal pain sensation. We also demonstrate that ASOs targeting the sodium channel Nav1.7 induce sustained analgesia up to 4 weeks. Taken together, our findings support the idea that ASOs possess the required pharmacodynamic properties, along with a long duration of action beneficial for treating pain.

Netrin-1 Confines Rhombic Lip-Derived Neurons to the CNS

Cell Reports

2018 Feb 13

Yung AR, Druckenbrod NR, Cloutier JF, Wu Z, Tessier-Lavigne M, Goodrich LV.
PMID: 29444422 | DOI: 10.1016/j.celrep.2018.01.068

During brainstem development, newborn neurons originating from the rhombic lip embark on exceptionally long migrations to generate nuclei important for audition, movement, and respiration. Along the way, this highly motile population passes several cranial nerves yet remains confined to the CNS. We found that Ntn1 accumulates beneath the pial surface separating the CNS from the PNS, with gaps at nerve entry sites. In mice null for Ntn1 or its receptor DCC, hindbrain neurons enter cranial nerves and migrate into the periphery. CNS neurons also escape when Ntn1 is selectively lost from the sub-pial region (SPR), and conversely, expression of Ntn1 throughout the mutant hindbrain can prevent their departure. These findings identify a permissive role for Ntn1 in maintaining the CNS-PNS boundary. We propose that Ntn1 confines rhombic lip-derived neurons by providing a preferred substrate for tangentially migrating neurons in the SPR, preventing their entry into nerve roots.

Clinicopathological features of squamous cell carcinoma of the oral cavity and oropharynx in young patients

Br J Oral Maxillofac Surg.

2018 Apr 05

Martinez RCP, Sathasivam HP, Cosway B, Paleri V, Fellows S, Adams J, Kennedy M, Pearson R, Long A, Sloan P, Robinson M.
PMID: 29628167 | DOI: 10.1016/j.bjoms.2018.03.011

Our aim was to examine the clinicopathological features of squamous cell carcinoma (SCC) of the oral cavity and oropharynx in a group of young patients who were dignosed during a 15-year period (2000-2014). Patients' clinical details, risk factors, and survival were obtained from medical records. Formalin-fixed, paraffin-embedded, tissue was tested for high-risk human papillomavirus (HPV). The results were compared with those of a matching group of older patients. We identified 91 patients who were younger than 45 years old, and the 50 youngest patients were studied in detail. The male:female ratio was 2:1, with more tumours located in the oral cavity than in the oropharynx (35 compared with 15). HPV-related SCC was restricted to the oropharynx. When matched for site, stage and HPV status, five-year overall survival was similar in young and matched older patients (log-rank test, p=0.515). Our findings suggest that young patients with oral SCC have a disease profile similar to that of older patients with the condition. It is plausible that prognostic information generally available for oral cancers is applicable to young patients with the disease.

Oxytocin functions as a spatiotemporal filter for excitatory synaptic inputs to VTA dopamine neurons.

Elife.

2018 Apr 20

Xiao L, Priest MF, Kozorovitskiy Y.
PMID: 29676731 | DOI: 10.7554/eLife.33892

The experience of rewarding or aversive stimuli is encoded by distinct afferents to dopamine (DA) neurons of the ventral tegmental area (VTA). Several neuromodulatory systems including oxytocin regulate DA neuron excitability and synaptic transmission that process socially meaningful stimuli. We and others have recently characterized oxytocinergic modulation of activity in mouse VTA DA neurons, but the mechanisms underlying oxytocinergic modulation of synaptic transmission in DA neurons remain poorly understood. Here, we find that oxytocin application or optogenetic release decrease excitatory synaptic transmission, via long lasting, presynaptic, endocannabinoid-dependent mechanisms. Oxytocin modulation of excitatory transmission alters the magnitude of short and long-term depression. We find that only some glutamatergic projections to DA neurons express CB1 receptors. Optogenetic stimulation of three major VTA inputs demonstrates that oxytocin modulation is limited to projections that show evidence of CB1R transcripts. Thus, oxytocin gates information flow into reward circuits in a temporally selective and pathway-specific manner.

Roles of Alternative RNA Splicing of the Bif-1 Gene by SRRM4 During the Development of Treatment-induced Neuroendocrine Prostate Cancer

EBioMedicine

2018 May 24

Gan Y, Li Y, Long Z, Lee AR, Xie N, Lovnicki JM, Tang Y, Chen X, Huang J, Dong X.
PMID: - | DOI: 10.1016/j.ebiom.2018.05.002

Treatment-induced neuroendocrine prostate cancer (t-NEPC) is an aggressive subtype of prostate cancer (PCa) that becomes more prevalent when hormonal therapy, chemotherapy, or radiation therapy is applied to patients with metastatic prostate adenocarcinoma (AdPC). How AdPC cells survive these anti-cancer therapies and progress into t-NEPC remains unclear. By comparing the whole transcriptomes between AdPC and t-NEPC, we identified Bif-1, an apoptosis-associated gene, which undergoes alternative RNA splicing in t-NEPC. We found that while Bif-1a is the predominant variant of the Bif-1 gene in AdPC, two neural-specific variants, Bif-1b and Bif-1c, are highly expressed in t-NEPC patients, patient derived xenografts, and cell models. The neural-specific RNA splicing factor, SRRM4, promotes Bif-1b and Bif-1c splicing, and the expression of SRRM4 in tumors is strongly associated with Bif-1b/-1c levels. Furthermore, we showed that Bif-1a is pro-apoptotic, while Bif-1b and Bif-1c are anti-apoptotic in PCa cells under camptothecin and UV light irritation treatments. Taken together, our data indicate that SRRM4 regulates alternative RNA splicing of the Bif-1 gene that enables PCa cells resistant to apoptotic stimuli under anti-cancer therapies, and may contribute to AdPC progression into t-NEPC.

Multiple, Independent T Cell Lymphomas Arising in an Experimentally FIV-Infected Cat during the Terminal Stage of Infection

Viruses

2018 May 24

Murphy B, Eckstrand C, Castillo D, Poon A, Liepnieks M, Harmon K, Moore P.
PMID: - | DOI: 10.3390/v10060280

Abstract
Our laboratory has serially reported on the virologic and immunopathologic features of a cohort of experimental feline immunodeficiency virus (FIV)-infected cats for more than eight years. At 8.09 years post infection (PI), one of these animals entered the terminal stage of infection, characterized by undulating hyperthermia, progressive anorexia, weight loss, and pancytopenia; the animal was not responsive to therapeutic interventions, necessitating euthanasia six weeks later (8.20 years PI). Subsequent analyses indicated that neoplastic lymphocytes infiltrated multiple cervical lymph nodes and a band-like region of the mucosal lamina propria within a segment of the intestine. Immunohistochemistry and T cell clonality testing determined that the nodal and intestinal lesions were independently arising from CD3 T cell lymphomas. In-situ RNA hybridization studies indicated that diffuse neoplastic lymphocytes from the cervical lymph node contained abundant viral nucleic acid, while viral nucleic acid was not detectable in lymphocytes from the intestinal lymphoma lesion. The proviral long terminal repeat (LTR) was amplified and sequenced from multiple anatomic sites, and a common clone containing a single nucleotide polymorphism was determined to be defective in response to phorbol myristate acetate (PMA)-mediated promoter activation in a reporter gene assay. This assay revealed a previously unidentified PMA response element within the FIV U3 region 3’ to the TATA box. The possible implications of these results on FIV-lymphoma pathogenesis are discussed.

Electrophysiological properties and projections of lateral hypothalamic parvalbumin positive neurons

PLoS One.

2018 Jun 12

Kisner A, Slocomb JE, Sarsfield S, Zuccoli ML, Siemian J, Gupta JF, Kumar A, Aponte Y.
PMID: 29894514 | DOI: 10.1371/journal.pone.0198991

Cracking the cytoarchitectural organization, activity patterns, and neurotransmitter nature of genetically-distinct cell types in the lateral hypothalamus (LH) is fundamental to develop a mechanistic understanding of how activity dynamics within this brain region are generated and operate together through synaptic connections to regulate circuit function. However, the precise mechanisms through which LH circuits orchestrate such dynamics have remained elusive due to the heterogeneity of the intermingled and functionally distinct cell types in this brain region. Here we reveal that a cell type in the mouse LH identified by the expression of the calcium-binding protein parvalbumin (PVALB; LHPV) is fast-spiking, releases the excitatory neurotransmitter glutamate, and sends long range projections throughout the brain. Thus, our findings challenge long-standing concepts that define neurons with a fast-spiking phenotype as exclusively GABAergic. Furthermore, we provide for the first time a detailed characterization of the electrophysiological properties of these neurons. Our work identifies LHPV neurons as a novel functional component within the LH glutamatergic circuitry.

The TGFβ-induced lncRNA TBILA promotes non-small cell lung cancer progression in vitro and in vivo via cis-regulating HGAL and activating S100A7/JAB1 signaling.

Cancer Lett.

2018 Jun 13

Lu Z, Li Y, Che Y, Huang J, Sun S, Mao S, Lei Y, Li N, Sun N, He J.
PMID: 29908210 | DOI: 10.1016/j.canlet.2018.06.013

Long non-coding RNAs (lncRNAs) play critical roles in multiple cellular processes in non-small cell lung cancer (NSCLC); however, the involvement of lncRNAs in the transforming growth factor-beta (TGFβ) signaling pathway, the critical tumor cell epithelial-mesenchymal transition (EMT) and metastasis pathway, remains poorly understood. To address this issue, we compared the lncRNAs expression patterns of NSCLC cells treated with and without TGFβ1 treatment. We observed that one of the most prominent hits, TGFβ-induced lncRNA (TBILA), promoted NSCLC progression and was upregulated in tumor tissues. Upregulated TBILA promotes human germinal center-associated lymphoma (HGAL) expression by binding to the Smad transcription factor complex, thereby enhancing RhoA activation. In addition, TBILA induces the S100A7-c-Jun activation domain-binding protein 1 (JAB1) pathway by binding to nuclear S100A7 and enhances pro-survival pathways in NSCLC. These findings have provided us with a new perspective regarding the regulation of the TGFβ signaling pathway in NSCLC and suggest that the lncRNA TBILA can serve as a target for anticancer therapies.

Distinct Biological Phenotypes of Marburg and Ravn Virus Infection in Macaques

J Infect Dis.

2018 Sep 12

Nicholas VV, Rosenke R, Feldmann F, Long D, Thomas T, Scott DP, Feldmann H, Marzi A.
PMID: 30215737 | DOI: 10.1093/infdis/jiy456

Filoviruses are among the most pathogenic infectious agents known to human, with high destructive potential, as evidenced by the recent Ebola virus epidemic in West Africa. As members of the filovirus family, marburgviruses have caused similar devastating outbreaks, albeit with lower case numbers. In this study we compare the pathogenesis of Ravn virus (RAVV) and Marburg virus (MARV) strains Angola, Musoke, and Ozolin in rhesus and cynomolgus macaques, the 2 nonhuman primate species most commonly used in filovirus research. Our results reveal the most pathogenic MARV strain to be Angola, followed by Musoke, whereas Ozolin is the least pathogenic. We also demonstrate that RAVV is highly pathogenic in cynomolgus macaques but less pathogenic in rhesus macaques. Our results demonstrate a preferential infection of endothelial cells by MARVs; in addition, analysis of tissue samples suggests that lymphocyte and hepatocyte apoptosis might play a role in MARV pathogenicity. This information expands our knowledge about pathogenicity and virulence of marburgviruses.

LncRNA CamK-A Regulates Ca2+-Signaling-Mediated Tumor Microenvironment Remodeling

Mol Cell.

2018 Sep 13

Sang L, Ju H, Liu G, Tian T, Ma G, Lu Y, Liu Z, Pan R, Li R, Piao H, Marks JR, Yang L, Yan Q, Wang W, Shao J, Zhou Y, Zhou T, Lin A.
PMID: 30220561 | DOI: 10.1016/j.molcel.2018.08.014

Cancer cells entail metabolic adaptation and microenvironmental remodeling to survive and progress. Both calcium (Ca2+) flux and Ca2+-dependent signaling play a crucial role in this process, although the underlying mechanism has yet to be elucidated. Through RNA screening, we identified one long noncoding RNA (lncRNA) named CamK-A (lncRNA for calcium-dependent kinase activation) in tumorigenesis. CamK-A is highly expressed in multiple human cancers and involved in cancer microenvironment remodeling via activation of Ca2+-triggered signaling. Mechanistically, CamK-A activates Ca2+/calmodulin-dependent kinase PNCK, which in turn phosphorylates IκBα and triggers calcium-dependent nuclear factor κB (NF-κB) activation. This regulation results in the tumor microenvironment remodeling, including macrophage recruitment, angiogenesis, and tumor progression. Notably, our human-patient-derived xenograft (PDX) model studies demonstrate that targeting CamK-A robustly impaired cancer development. Clinically, CamK-A expression coordinates with the activation of CaMK-NF-κB axis, and its high expression indicates poor patient survival rate, suggesting its role as a potential biomarker and therapeutic target.

Pages

  • « first
  • ‹ previous
  • …
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?