ACD can configure probes for the various manual and automated assays for LONG for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Cell Rep.
2019 Apr 16
Kiyama T, Long Y, Chen CK, Whitaker CM, Shay A, Wu H, Badea TC, Mohsenin A, Parker-Thornburg J, Klein WH, Mills SL, Massey SC, Mao CA.
PMID: 30995485 | DOI: 10.1016/j.celrep.2019.03.077
In the mouse retina, more than 30 retinal ganglion cell (RGC) subtypes have been classified based on a combined metric of morphological and functional characteristics. RGCs arise from a common pool of retinal progenitor cells during embryonic stages and differentiate into mature subtypes in adult retinas. However, the cellular and molecular mechanisms controlling formation and maturation of such remarkable cellular diversity remain unknown. Here, we demonstrate that T-box transcription factor T-brain 1 (Tbr1) is expressed in two groups of morphologically and functionally distinct RGCs: the orientation-selective J-RGCs and a group of OFF-sustained RGCs with symmetrical dendritic arbors. When Tbr1 is genetically ablated during retinal development, these two RGC groups cannot develop. Ectopically expressing Tbr1 in M4 ipRGCs during development alters dendritic branching and density but not the inner plexiform layer stratification level. Our data indicate that Tbr1 plays critical roles in regulating the formation and dendritic morphogenesis of specific RGC types.
Emerg Microbes Infect
2019 May 16
Arruda B, Piñeyro P, Derscheid R, Hause B, Byers E, Dion K, Long D, Sievers C, Tangen J, Williams T, Schwartz K.
PMID: 31096848 | DOI: 10.1080/22221751.2019.1613176
Porcine circovirus-associated disease encompasses multiple disease syndromes including porcine circovirus 2 systemic diseases, reproductive failure, and porcine dermatitis and nephropathy syndrome. Until recently, porcine circovirus 2 was the only species associated with the porcine circovirus-associated disease. In this report, diagnostic investigations of thirty-six field cases submitted from multiple production systems, numerous sites and varied geographic locations demonstrated porcine circovirus 3 within lesions by in situ hybridization including fetuses with myocarditis, weak-born neonatal piglets with encephalitis and myocarditis, from cases of porcine dermatitis and nephropathy syndrome, and in weaned pigs with systemic periarteritis. Porcine circovirus 3 was detected by PCR in numerous fetuses and perinatal piglets at high viral loads (trillions of genome copies per mL of tissue homogenate). Samples from all cases in this study were assayed and found negative for porcine circovirus 2 by PCR. Metagenomic sequencing was performed on a subset of reproductive cases, consisting of sixteen fetuses/fetal sample pools. PCV3 was identified in all pools and the only virus identified in fourteen pools. Based on these data, porcine circovirus 3 is considered a putative cause of reproductive failure, encephalitis and myocarditis in perinatal piglets, porcine dermatitis and nephropathy syndrome, and periarteritis in swine in the United States.
Cancer Lett
2019 Aug 26
Huang J, Li J, Li Y, Lu Z, Che Y, Mao S, Lei Y, Zang R, Zheng S, Liu C, Wang X, Li N, Sun N, He J.
PMID: 31173852 | DOI: 10.1016/j.canlet.2019.05.038
Interferons (IFNs) play crucial roles in the development and treatment of cancer. Long non-coding RNAs (lncRNAs) are emerging molecules involved in cancer progression. Here, we identified and characterized an IFN-inducible nuclear lncRNA IRF1-AS (Interferon Regulatory Factor 1 Antisense RNA) which was positively correlated with IRF1 expression. IFNs upregulate IRF1-AS via the JAK-STAT pathway. Knockdown and overexpression of IRF1-AS revealed that IRF1-AS inhibits oesophageal squamous cell carcinoma (ESCC) proliferation and promotes apoptosis in vitro and in vivo. Mechanistically, IRF1-AS activates IRF1 (Interferon Regulatory Factor 1) transcription through interacting with ILF3 (Interleukin Enhancer Binding Factor 3) and DHX9 (DExH-Box Helicase 9). In turn, IRF1 binds to the IRF1-AS promoter directly and activates IRF1-AS transcription. Global analysis of IRF1-AS-regulated genes indicated that IRF1-AS activates the IFN response in vitro and in vivo. IRF1 knockdown in IRF1-AS-overexpressing cells abolished the antiproliferative effect and activation of the IFN response. Furthermore, IRF1-AS was downregulated in ESCC tissues, and low expression correlated with poor prognosis. In conclusion, the interferon-inducible lncRNA IRF1-AS represses esophageal squamous cell carcinoma progression by promoting interferon response through a positive regulatory loop with IRF1
Nat Immunol.
2019 Jun 03
Hu Q, Ye Y, Chan LC, Li Y, Liang K, Lin A, Egranov SD, Zhang Y, Xia W, Gong J, Pan Y, Chatterjee SS, Yao J, Evans KW, Nguyen TK, Park PK, Liu J, Coarfa C, Donepudi SR, Putluri V, Putluri N, Sreekumar A, Ambati CR, Hawke DH, Marks JR, Gunaratne PH, Caudle AS, Sahin AA, Hortobagyi GN, Meric-Bernstam F, Chen L, Yu D, Hung MC, Curran MA, Han L, Lin C, Yang L.
PMID: 31160797 | DOI: 10.1038/s41590-019-0400-7
How tumor cells genetically lose antigenicity and evade immune checkpoints remains largely elusive. We report that tissue-specific expression of the human long noncoding RNA LINK-A in mouse mammary glands initiates metastatic mammary gland tumors, which phenotypically resemble human triple-negative breast cancer (TNBC). LINK-A expression facilitated crosstalk between phosphatidylinositol-(3,4,5)-trisphosphate and inhibitory G-protein-coupled receptor (GPCR) pathways, attenuating protein kinase A-mediated phosphorylation of the E3 ubiquitin ligase TRIM71. Consequently, LINK-A expression enhanced K48-polyubiquitination-mediated degradation of the antigen peptide-loading complex (PLC) and intrinsic tumor suppressors Rb and p53. Treatment with LINK-A locked nucleic acids or GPCR antagonists stabilized the PLC components, Rb and p53, and sensitized mammary gland tumors to immune checkpoint blockers. Patients with programmed ccll death protein-1(PD-1) blockade-resistant TNBC exhibited elevated LINK-A levels and downregulated PLC components. Hence we demonstrate lncRNA-dependent downregulation of antigenicity and intrinsic tumor suppression, which provides the basis for developing combinational immunotherapy treatment regimens and early TNBC prevention.
EMBO J
2019 Dec 12
Wu X, Hu J, Li G, Li Y, Li Y, Zhang J, Wang F, Li A, Hu L, Fan Z, L� S, Ding G, Zhang C, Wang J, Long M, Wang S
PMID: 31830314 | DOI: 10.15252/embj.2019102374
Nature cell biology
2023 Jun 01
Han, L;Huang, D;Wu, S;Liu, S;Wang, C;Sheng, Y;Lu, X;Broxmeyer, HE;Wan, J;Yang, L;
PMID: 37264180 | DOI: 10.1038/s41556-023-01162-4
Science signaling
2023 Jun 20
Fan, C;González-Prieto, R;Kuipers, TB;Vertegaal, ACO;van Veelen, PA;Mei, H;Ten Dijke, P;
PMID: 37339182 | DOI: 10.1126/scisignal.adf1947
Viruses
2023 Jun 17
Rani, AQ;Nurmemet, D;Liffick, J;Khan, A;Mitchell, D;Li, J;Zhao, B;Liu, X;
PMID: 37376685 | DOI: 10.3390/v15061388
Cell reports
2023 Jun 01
Li, L;Sun, Y;Davis, AE;Shah, SH;Hamed, LK;Wu, MR;Lin, CH;Ding, JB;Wang, S;
PMID: 37269288 | DOI: 10.1016/j.celrep.2023.112596
SSRN Electronic Journal
2022 Dec 02
Li, Y;Chen, B;Jiang, X;Li, Y;Huang, S;Xiao, Y;Shi, D;Huang, X;He, L;Chen, X;Ouyang, Y;Li, J;Song, L;Lin, C;
| DOI: 10.2139/ssrn.4287908
Stem cell reports
2023 May 09
Liu, YV;Santiago, CP;Sogunro, A;Konar, GJ;Hu, MW;McNally, MM;Lu, YC;Flores-Bellver, M;Aparicio-Domingo, S;Li, KV;Li, ZL;Agakishiev, D;Hadyniak, SE;Hussey, KA;Creamer, TJ;Orzolek, LD;Teng, D;Canto-Soler, MV;Qian, J;Jiang, Z;Johnston, RJ;Blackshaw, S;Singh, MS;
PMID: 37163980 | DOI: 10.1016/j.stemcr.2023.04.004
The EMBO journal
2023 Mar 30
Fan, C;Wang, Q;Kuipers, TB;Cats, D;Iyengar, PV;Hagenaars, SC;Mesker, WE;Devilee, P;Tollenaar, RAEM;Mei, H;Ten Dijke, P;
PMID: 36994542 | DOI: 10.15252/embj.2022112806
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com