Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for LONG

ACD can configure probes for the various manual and automated assays for LONG for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

ACD’s data images for Long gene.

  • RNA expression of long gene in Human Colorectal cancer sample using RNAscope™ 2.5 HD Assay Brown

  • RNA expression of long gene in Human Gastric cancer sample using RNAscope™ 2.5 HD Assay Brown

  • RNA expression of long gene in Human Glioma sample using RNAscope™ 2.5 HD Assay Brown

  • RNA expression of long gene in Human Lung cancer sample using RNAscope™ 2.5 HD Assay Brown

  • RNA expression of long gene in Human ovarian cancer sample using RNAscope™ 2.5 HD Assay Brown

  • Expression of long in Human Prostate cancer sample using RNAscope™ 2.5 HD Assay Brown

  • Probes for Long (25732)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (368)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (57) Apply TBD filter
  • MALAT1 (13) Apply MALAT1 filter
  • H19 (7) Apply H19 filter
  • SARS-CoV-2 (7) Apply SARS-CoV-2 filter
  • HOTAIR (6) Apply HOTAIR filter
  • Neat1 (4) Apply Neat1 filter
  • Slc17a6 (4) Apply Slc17a6 filter
  • Slc17a7 (4) Apply Slc17a7 filter
  • SChLAP1 (4) Apply SChLAP1 filter
  • MEG3 (3) Apply MEG3 filter
  • Gad1 (3) Apply Gad1 filter
  • MMP13 (3) Apply MMP13 filter
  • GFAP (3) Apply GFAP filter
  • PVT1 (3) Apply PVT1 filter
  • Col2a1 (3) Apply Col2a1 filter
  • col10a1 (3) Apply col10a1 filter
  • UCA1 (3) Apply UCA1 filter
  • LINC00473 (3) Apply LINC00473 filter
  • EBER1 (3) Apply EBER1 filter
  • ACTA2 (2) Apply ACTA2 filter
  • GAPDH (2) Apply GAPDH filter
  • Alpl (2) Apply Alpl filter
  • Wnt5a (2) Apply Wnt5a filter
  • ICAM1 (2) Apply ICAM1 filter
  • FOS (2) Apply FOS filter
  • GREM1 (2) Apply GREM1 filter
  • PVALB (2) Apply PVALB filter
  • Sst (2) Apply Sst filter
  • Cdh13 (2) Apply Cdh13 filter
  • PDGFRA (2) Apply PDGFRA filter
  • Gad2 (2) Apply Gad2 filter
  • BCAR4 (2) Apply BCAR4 filter
  • Chat (2) Apply Chat filter
  • CXCL12 (2) Apply CXCL12 filter
  • GAS5 (2) Apply GAS5 filter
  • Pomc (2) Apply Pomc filter
  • CARTPT (2) Apply CARTPT filter
  • Runx2 (2) Apply Runx2 filter
  • TIE1 (2) Apply TIE1 filter
  • vGlut2 (2) Apply vGlut2 filter
  • Pnky (2) Apply Pnky filter
  • PD-L1 (2) Apply PD-L1 filter
  • RAD51-AS1 (2) Apply RAD51-AS1 filter
  • LINC01133 (2) Apply LINC01133 filter
  • LINK-A (2) Apply LINK-A filter
  • LpR2 (2) Apply LpR2 filter
  • LINC00958 (2) Apply LINC00958 filter
  • Lncenc1 (2) Apply Lncenc1 filter
  • ROR (2) Apply ROR filter
  • ELDR (2) Apply ELDR filter

Product

  • RNAscope Multiplex Fluorescent Assay (56) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (47) Apply RNAscope filter
  • RNAscope 2.0 Assay (44) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Red assay (39) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Fluorescent Multiplex Assay (37) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 HD Brown Assay (24) Apply RNAscope 2.5 HD Brown Assay filter
  • BASEscope Assay RED (9) Apply BASEscope Assay RED filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (8) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.5 LS Assay (5) Apply RNAscope 2.5 LS Assay filter
  • TBD (5) Apply TBD filter
  • Basescope (3) Apply Basescope filter
  • RNAscope 2.5 HD Duplex (3) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope Multiplex Fluorescent v2 (3) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope 2.5 VS Assay (2) Apply RNAscope 2.5 VS Assay filter
  • DNAscope HD Duplex Reagent Kit (1) Apply DNAscope HD Duplex Reagent Kit filter

Research area

  • Cancer (120) Apply Cancer filter
  • lncRNA (110) Apply lncRNA filter
  • Neuroscience (74) Apply Neuroscience filter
  • LncRNAs (41) Apply LncRNAs filter
  • Development (24) Apply Development filter
  • Infectious Disease (16) Apply Infectious Disease filter
  • Inflammation (12) Apply Inflammation filter
  • Stem Cells (10) Apply Stem Cells filter
  • Covid (9) Apply Covid filter
  • Other (7) Apply Other filter
  • Bone (5) Apply Bone filter
  • Immunotherapy (4) Apply Immunotherapy filter
  • Infectious (4) Apply Infectious filter
  • Developmental (3) Apply Developmental filter
  • HPV (3) Apply HPV filter
  • Kidney (3) Apply Kidney filter
  • Pain (3) Apply Pain filter
  • Stem cell (3) Apply Stem cell filter
  • Alzheimer's Disease (2) Apply Alzheimer's Disease filter
  • Autism (2) Apply Autism filter
  • CGT (2) Apply CGT filter
  • Endocrinology (2) Apply Endocrinology filter
  • Heart (2) Apply Heart filter
  • Injury (2) Apply Injury filter
  • Long Covid (2) Apply Long Covid filter
  • Metabolism (2) Apply Metabolism filter
  • osteoarthritis (2) Apply osteoarthritis filter
  • Other: Cell Biology (2) Apply Other: Cell Biology filter
  • Age-related macular degeneration (1) Apply Age-related macular degeneration filter
  • Aging (1) Apply Aging filter
  • Circadian clock (1) Apply Circadian clock filter
  • Feeding Behavior (1) Apply Feeding Behavior filter
  • Hearing (1) Apply Hearing filter
  • HIV (1) Apply HIV filter
  • Huntington's Disease (1) Apply Huntington's Disease filter
  • Infectious Disease: Ebola virus disease (1) Apply Infectious Disease: Ebola virus disease filter
  • Influenza A (1) Apply Influenza A filter
  • Jet Leg (1) Apply Jet Leg filter
  • Lnc (1) Apply Lnc filter
  • Lung (1) Apply Lung filter
  • Metabolic (1) Apply Metabolic filter
  • MicroRNAs (1) Apply MicroRNAs filter
  • Other: Eyes (1) Apply Other: Eyes filter
  • Other: Genomics (1) Apply Other: Genomics filter
  • Other: Heart (1) Apply Other: Heart filter
  • Other: Kidney (1) Apply Other: Kidney filter
  • Other: Liver (1) Apply Other: Liver filter
  • Other: Methods (1) Apply Other: Methods filter
  • Regeneration (1) Apply Regeneration filter
  • Skin (1) Apply Skin filter

Category

  • Publications (368) Apply Publications filter
Fluoxetine plus lithium for treatment of mental health impairment in Long Covid

Qeios

2022 Sep 21

Fessel, J;
| DOI: 10.32388/cf8mip

Mental disability is a serious and often disabling symptom of Long Covid, for which currently there is no recommendable pharmacotherapy for those patients whose response to psychotherapy is suboptimal. Treatment could be formulated by using drugs that address the brain cell-types that have been demonstrated as dominantly affected in Long Covid. Those cell-types are astrocytes, oligodendrocytes, endothelial cells/pericytes, and microglia. Lithium and fluoxetine each address all of those four cell-types. They should be administered in combination for both depth of benefit and reduction of dosages. Low dosage of each is likely to be well-tolerated and to cause neither adverse events (AE) nor serious adverse events (SAE).
The pathogenesis of gastrointestinal, hepatic and pancreatic injury in acute and long COVID-19 infection

Gastroenterology Clinics of North America

2022 Dec 01

Meringer, H;Wang, A;Mehandru, S;
| DOI: 10.1016/j.gtc.2022.12.001

The gastrointestinal tract (GI) is targeted by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The present review examines GI involvement in patients with long COVID and discusses the underlying pathophysiological mechanisms that include viral persistence, mucosal and systemic immune dysregulation, microbial dysbiosis, insulin resistance and metabolic abnormalities. Due to the complex and potentially multifactorial nature of this syndrome, rigorous clinical definitions and pathophysiology-based therapeutic approaches are warranted
LncRNA PSR Regulates Vascular Remodeling Through Encoding a Novel Protein Arteridin

Circulation research

2022 Sep 22

Yu, J;Wang, W;Yang, J;Zhang, Y;Gong, X;Luo, H;Cao, N;Xu, Z;Tian, M;Yang, P;Mei, Q;Chen, Z;Li, Z;Li, C;Duan, X;Lyu, QR;Gao, C;Zhang, B;Wang, Y;Wu, G;Zeng, C;
PMID: 36134578 | DOI: 10.1161/CIRCRESAHA.122.321080

Vascular smooth muscle cells (VSMCs) phenotype switch from contractile to proliferative phenotype is a pathological hallmark in various cardiovascular diseases. Recently, a subset of long noncoding RNAs was identified to produce functional polypeptides. However, the functional impact and regulatory mechanisms of long noncoding RNAs in VSMCs phenotype switching remain to be fully elucidated.To illustrate the biological function and mechanism of a VSMC-enriched long noncoding RNA and its encoded peptide in VSMC phenotype switching and vascular remodeling.We identified a VSMC-enriched transcript encoded by a previously uncharacterized gene, which we called phenotype switching regulator (PSR), which was markedly upregulated during vascular remodeling. Although PSR was annotated as a long noncoding RNA, we demonstrated that the lncPSR also encoded a protein, which we named arteridin. In VSMCs, both arteridin and lncPSR were necessary and sufficient to induce phenotype switching. Mechanistically, arteridin and lncPSR regulate downstream genes by directly interacting with a transcription factor YBX1 (Y-box binding protein 1) and modulating its nuclear translocation and chromatin targeting. Intriguingly, the PSR transcription was also robustly induced by arteridin. More importantly, the loss of PSR gene or arteridin protein significantly attenuated the vascular remodeling induced by carotid arterial injury. In addition, VSMC-specific inhibition of lncPSR using adeno-associated virus attenuated Ang II (angiotensin II)-induced hypertensive vascular remodeling.PSR is a VSMC-enriched gene, and its encoded transcript (lncPSR) and protein (arteridin) coordinately regulate transcriptional reprogramming through a shared interacting partner, YBX1. This is a previously uncharacterized regulatory circuit in VSMC phenotype switching during vascular remodeling, with lncPSR/arteridin as potential therapeutic targets for the treatment of VSMC phenotype switching-related vascular remodeling.
The long and short: Non-coding RNAs in the mammalian inner ear

Hearing research

2022 Dec 16

Koffler-Brill, T;Noy, Y;Avraham, KB;
PMID: 36566643 | DOI: 10.1016/j.heares.2022.108666

Non-coding RNAs (ncRNAs) play a critical role in the entire body, and their mis-regulation is often associated with disease. In parallel with the advances in high-throughput sequencing technologies, there is a great deal of focus on this broad class of RNAs. Although these molecules are not translated into proteins, they are now well established as significant regulatory components in many biological pathways and pathological conditions. ncRNAs can be roughly divided into two main sub-groups based on the length of the transcript, with both the small and long non-coding RNAs having diverse regulatory functions. The smaller length group includes ribosomal RNAs (rRNA), transfer RNAs (tRNA), small nuclear RNAs (snRNA), small nucleolar RNAs (snoRNA), microRNAs (miRNA), small interfering RNAs (siRNA), and PIWI-associated RNAs (piRNA). The longer length group includes linear long non-coding RNAs (lncRNA) and circular RNAs (circRNA). This review is designed to present the different classes of small and long ncRNA molecules and describe some of their known roles in physiological and pathological conditions, as well as methods used to assess the validity and function of miRNAs and lncRNAs, with a focus on their role and functions in the inner ear, hearing and deafness.
Distinct skeletal stem cell types orchestrate long bone skeletogenesis

eLife

2021 Jul 19

Ambrosi, TH;Sinha, R;Steininger, HM;Hoover, MY;Murphy, MP;Koepke, LS;Wang, Y;Lu, WJ;Morri, M;Neff, NF;Weissman, IL;Longaker, MT;Chan, CK;
PMID: 34280086 | DOI: 10.7554/eLife.66063

Skeletal stem and progenitor cell populations are crucial for bone physiology. Characterization of these cell types remains restricted to heterogenous bulk populations with limited information on whether they are unique or overlap with previously characterized cell types. Here we show, through comprehensive functional and single-cell transcriptomic analyses, that postnatal long bones of mice contain at least two types of bone progenitors with bona fide skeletal stem cell (SSC) characteristics. An early osteochondral SSC (ocSSC) facilitates long bone growth and repair, while a second type, a perivascular SSC (pvSSC), co-emerges with long bone marrow and contributes to shape the hematopoietic stem cell niche and regenerative demand. We establish that pvSSCs, but not ocSSCs, are the origin of bone marrow adipose tissue. Lastly, we also provide insight into residual SSC heterogeneity as well as potential crosstalk between the two spatially distinct cell populations. These findings comprehensively address previously unappreciated shortcomings of SSC research.
DANCR Induces Cisplatin Resistance of Triple-Negative Breast Cancer by KLF5/p27 Signaling

The American journal of pathology

2022 Dec 10

Su, A;Yao, K;Zhang, H;Wang, Y;Zhang, H;Tang, J;
PMID: 36509121 | DOI: 10.1016/j.ajpath.2022.11.007

An increasing body of evidence suggests that long noncoding RNAs play critical roles in human cancer. Breast cancer is a heterogeneous disease and the potential involvement of long noncoding RNAs in breast cancer remains poorly understood. Herein, researchers identified a long noncoding RNA, DANCR, which promotes cisplatin chemoresistance in triple-negative breast cancer cells. Mechanistically, DANCR could bind to Krüppel-like factor 5 (KLF5) and induce acetylation of KLF5 at lysine 369 (K369), and DANCR knockdown resulted in down-regulation of KLF5 protein levels. Furthermore, researchers found that the DANCR/KLF5 signaling pathway induced hypersensitivity to cisplatin in chemoresistant patients by inhibiting p27 transcription. In summary, researcher's study reinforces the potential presence of a growth regulatory network found in triple-negative breast cancer cells, and a DANCR/KLF5/p27 signaling pathway was documented in the present study that mediates cisplatin chemoresistance in triple-negative breast cancer.
The CASC15 Long Intergenic Non-Coding RNA Locus is Involved in Melanoma Progression and Phenotype-Switching

J Invest Dermatol. 2015 May 27.

Lessard L, Liu M, Marzese DM, Wang H, Chong K, Kawas N, Donovan NC, Kiyohara E, Hsu S, Nelson N, Izraely S, Sagi-Assif O, Witz IP, Ma XJ, Luo Y, Hoon DS.
PMID: 26020126

In recent years, considerable advances have been made in the characterization of protein-coding alterations involved in the pathogenesis of melanoma. However, despite their growing implication in cancer, little is known about the role of long non-coding RNAs in melanoma progression. We hypothesized that copy number alterations of intergenic non-protein coding domains could help identify long intergenic non-coding RNAs (lincRNAs) associated with metastatic cutaneous melanoma. Among several candidates, our approach uncovered the chromosome 6p22.3 CASC15 lincRNA locus as a frequently gained genomic segment in metastatic melanoma tumors and cell lines. The locus was actively transcribed in metastatic melanoma cells, and up-regulation of CASC15 expression was associated with metastatic progression to brain metastasis in a mouse xenograft model. In clinical specimens, CASC15 levels increased during melanoma progression and were independent predictors of disease recurrence in a cohort of 141 patients with AJCC stage III lymph node metastasis. Moreover, siRNA knockdown experiments revealed that CASC15 regulates melanoma cell phenotype switching between proliferative and invasive states. Accordingly, CASC15 levels correlated with known gene signatures corresponding to melanoma proliferative and invasive phenotypes. These findings support a key role for CASC15 in metastatic melanoma.
Regulation of Peripheral Myelination through Transcriptional Buffering of Egr2 by an Antisense Long Non-coding RNA

Cell Rep.

2017 Aug 22

Martinez-Moreno M, O'Shea TM, Zepecki JP, Olaru A, Ness JK, Langer R, Tapinos N.
PMID: 28834756 | DOI: 10.1016/j.celrep.2017.07.068

Precise regulation of Egr2 transcription is fundamentally important to the control of peripheral myelination. Here, we describe a long non-coding RNA antisense to the promoter of Egr2 (Egr2-AS-RNA). During peripheral nerve injury, the expression of Egr2-AS-RNA is increased and correlates with decreased Egr2 transcript and protein levels. Ectopic expression of Egr2-AS-RNA in dorsal root ganglion (DRG) cultures inhibits the expression of Egr2 mRNA and induces demyelination. In vivo inhibition of Egr2-AS-RNA using oligonucleotide GapMers released from a biodegradable hydrogel following sciatic nerve injury reverts the EGR2-mediated gene expression profile and significantly delays demyelination. Egr2-AS-RNA gradually recruits H3K27ME3, AGO1, AGO2, and EZH2 on the Egr2 promoter following sciatic nerve injury. Furthermore, expression of Egr2-AS-RNA is regulated through ERK1/2 signaling to YY1, while loss of Ser184 of YY1 regulates binding to Egr2-AS-RNA. In conclusion, we describe functional exploration of an antisense long non-coding RNA in peripheral nervous system (PNS) biology.

The endogenous retrovirus-derived long noncoding RNA TROJAN promotes triple-negative breast cancer progression via ZMYND8 degradation.

Sci Adv.

2019 Mar 06

Jin X, Xu XE, Jiang YZ, Liu YR, Sun W, Guo YJ, Ren YX, Zuo WJ, Hu X, Huang SL, Shen HJ, Lan F, He YF, Hu GH, Di GH, He XH, Li DQ, Liu S, Yu KD, Shao ZM.
PMID: 30854423 | DOI: 10.1126/sciadv.aat9820

Human endogenous retroviruses (HERVs) play pivotal roles in the development of breast cancer. However, the detailed mechanisms of noncoding HERVs remain elusive. Here, our genome-wide transcriptome analysis of HERVs revealed that a primate long noncoding RNA, which we dubbed TROJAN, was highly expressed in human triple-negative breast cancer (TNBC). TROJAN promoted TNBC proliferation and invasion and indicated poor patient outcomes. We further confirmed that TROJAN could bind to ZMYND8, a metastasis-repressing factor, and increase its degradation through the ubiquitin-proteasome pathway by repelling ZNF592. TROJAN also epigenetically up-regulated metastasis-related genes in multiple cell lines. Correlations between TROJAN and ZMYND8 were subsequently confirmed in clinical samples. Furthermore, our study verified that antisense oligonucleotide therapy targeting TROJAN substantially suppressed TNBC progression in vivo. In conclusion, the long noncoding RNA TROJAN promotes TNBC progression and serves as a potential therapeutic target.

The long noncoding RNA Falcor regulates Foxa2 expression to maintain lung epithelial homeostasis and promote regeneration.

Genes Dev.

2019 Mar 28

Swarr DT, Herriges M, Li S, Morley M, Fernandes S, Sridharan A, Zhou S, Garcia BA, Stewart K, Morrisey EE.
PMID: 30923168 | DOI: 10.1101/gad.320523.118

Transcription factors (TFs) are dosage-sensitive master regulators of gene expression, with haploinsufficiency frequently leading to life-threatening disease. Numerous mechanisms have evolved to tightly regulate the expression and activity of TFs at the transcriptional, translational, and posttranslational levels. A subset of long noncoding RNAs (lncRNAs) is spatially correlated with transcription factors in the genome, but the regulatory relationship between these lncRNAs and their neighboring TFs is unclear. We identified a regulatory feedback loop between the TF Foxa2 and a downstream lncRNA, Falcor (Foxa2-adjacent long noncoding RNA). Foxa2 directly represses Falcor expression by binding to its promoter, while Falcor functions in cis to positively regulate the expression of Foxa2. In the lung, loss of Falcor is sufficient to lead to chronic inflammatory changes and defective repair after airway epithelial injury. Moreover, disruption of the Falcor-Foxa2 regulatory feedback loop leads to altered cell adhesion and migration, in turn resulting in chronic peribronchial airway inflammation and goblet cell metaplasia. These data reveal that the lncRNA Falcor functions within a regulatory feedback loop to fine-tune the expression of Foxa2, maintain airway epithelial homeostasis, and promote regeneration.

A Treg-specific long noncoding RNA maintains immune-metabolic homeostasis in aging liver

Nature aging

2023 Jun 05

Ding, C;Yu, Z;Sefik, E;Zhou, J;Kaffe, E;Wang, G;Li, B;Flavell, RA;Hu, W;Ye, Y;Li, HB;
PMID: 37277640 | DOI: 10.1038/s43587-023-00428-8

Regulatory T (Treg) cells modulate several aging-related liver diseases. However, the molecular mechanisms regulating Treg function in this context are unknown. Here we identified a long noncoding RNA, Altre (aging liver Treg-expressed non-protein-coding RNA), which was specifically expressed in the nucleus of Treg cells and increased with aging. Treg-specific deletion of Altre did not affect Treg homeostasis and function in young mice but caused Treg metabolic dysfunction, inflammatory liver microenvironment, liver fibrosis and liver cancer in aged mice. Depletion of Altre reduced Treg mitochondrial integrity and respiratory capacity, and induced reactive oxygen species accumulation, thus increasing intrahepatic Treg apoptosis in aged mice. Moreover, lipidomic analysis identified a specific lipid species driving Treg aging and apoptosis in the aging liver microenvironment. Mechanistically, Altre interacts with Yin Yang 1 to orchestrate its occupation on chromatin, thereby regulating the expression of a group of mitochondrial genes, and maintaining optimal mitochondrial function and Treg fitness in the liver of aged mice. In conclusion, the Treg-specific nuclear long noncoding RNA Altre maintains the immune-metabolic homeostasis of the aged liver through Yin Yang 1-regulated optimal mitochondrial function and the Treg-sustained liver immune microenvironment. Thus, Altre is a potential therapeutic target for the treatment of liver diseases affecting older adults.
The long non-coding RNA LINC00958 is induced in psoriasis epidermis and modulates epidermal proliferation

The Journal of investigative dermatology

2023 Jan 11

Luo, L;Pasquali, L;Srivastava, A;Freisenhausen, JC;Pivarcsi, A;Sonkoly, E;
PMID: 36641130 | DOI: 10.1016/j.jid.2022.12.011

Psoriasis is a common immune-mediated skin disease characterized by epidermal hyperproliferation and chronic skin inflammation. Long non-coding RNAs (lncRNAs) are >200 nucleotide long transcripts, which possess important regulatory functions. To date, little is known about the contribution of lncRNAs to psoriasis. Here, we identify LINC00958 as a lncRNA overexpressed in keratinocytes from psoriasis skin lesions, in a transcriptomic screen performed on keratinocytes sorted from psoriasis and healthy skin. Increased levels of LINC00958 in psoriasis keratinocytes were confirmed by RT-qPCR and single molecule in situ hybridization. Confocal microscopy and analysis of subcellular fractions showed that LINC00958 is mainly localized in the cytoplasm of keratinocytes. IL-17A, a key psoriasis cytokine, induced LINC00958 in keratinocytes through C/EBP-β and the p38 pathway. Inhibition of LINC00958 led to decreased proliferation as measured by Ki67 expression, IncuCyte imaging and EdU assays. Transcriptomic analysis of LINC00958-depleted keratinocytes revealed enrichment of proliferation and cell cycle-related genes among differentially expressed transcripts. Moreover, LINC00958-depletion led to decreased basal and IL-17A-induced phosphorylation of p38. Furthermore, IL-17A-induced keratinocyte proliferation was counteracted by the inhibition of LINC00958. In summary, our data support a role for the IL-17A-induced lncRNA, LINC00958, in the pathological circuits in psoriasis by reinforcing IL-17A-induced epidermal hyperproliferation.

Pages

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?