Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for LONG

ACD can configure probes for the various manual and automated assays for LONG for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

ACD’s data images for Long gene.

  • RNA expression of long gene in Human Colorectal cancer sample using RNAscope™ 2.5 HD Assay Brown

  • RNA expression of long gene in Human Gastric cancer sample using RNAscope™ 2.5 HD Assay Brown

  • RNA expression of long gene in Human Glioma sample using RNAscope™ 2.5 HD Assay Brown

  • RNA expression of long gene in Human Lung cancer sample using RNAscope™ 2.5 HD Assay Brown

  • RNA expression of long gene in Human ovarian cancer sample using RNAscope™ 2.5 HD Assay Brown

  • Expression of long in Human Prostate cancer sample using RNAscope™ 2.5 HD Assay Brown

  • Probes for Long (25732)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (368)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (57) Apply TBD filter
  • MALAT1 (13) Apply MALAT1 filter
  • H19 (7) Apply H19 filter
  • SARS-CoV-2 (7) Apply SARS-CoV-2 filter
  • HOTAIR (6) Apply HOTAIR filter
  • Neat1 (4) Apply Neat1 filter
  • Slc17a6 (4) Apply Slc17a6 filter
  • Slc17a7 (4) Apply Slc17a7 filter
  • SChLAP1 (4) Apply SChLAP1 filter
  • MEG3 (3) Apply MEG3 filter
  • Gad1 (3) Apply Gad1 filter
  • MMP13 (3) Apply MMP13 filter
  • GFAP (3) Apply GFAP filter
  • PVT1 (3) Apply PVT1 filter
  • Col2a1 (3) Apply Col2a1 filter
  • col10a1 (3) Apply col10a1 filter
  • UCA1 (3) Apply UCA1 filter
  • LINC00473 (3) Apply LINC00473 filter
  • EBER1 (3) Apply EBER1 filter
  • ACTA2 (2) Apply ACTA2 filter
  • GAPDH (2) Apply GAPDH filter
  • Alpl (2) Apply Alpl filter
  • Wnt5a (2) Apply Wnt5a filter
  • ICAM1 (2) Apply ICAM1 filter
  • FOS (2) Apply FOS filter
  • GREM1 (2) Apply GREM1 filter
  • PVALB (2) Apply PVALB filter
  • Sst (2) Apply Sst filter
  • Cdh13 (2) Apply Cdh13 filter
  • PDGFRA (2) Apply PDGFRA filter
  • Gad2 (2) Apply Gad2 filter
  • BCAR4 (2) Apply BCAR4 filter
  • Chat (2) Apply Chat filter
  • CXCL12 (2) Apply CXCL12 filter
  • GAS5 (2) Apply GAS5 filter
  • Pomc (2) Apply Pomc filter
  • CARTPT (2) Apply CARTPT filter
  • Runx2 (2) Apply Runx2 filter
  • TIE1 (2) Apply TIE1 filter
  • vGlut2 (2) Apply vGlut2 filter
  • Pnky (2) Apply Pnky filter
  • PD-L1 (2) Apply PD-L1 filter
  • RAD51-AS1 (2) Apply RAD51-AS1 filter
  • LINC01133 (2) Apply LINC01133 filter
  • LINK-A (2) Apply LINK-A filter
  • LpR2 (2) Apply LpR2 filter
  • LINC00958 (2) Apply LINC00958 filter
  • Lncenc1 (2) Apply Lncenc1 filter
  • ROR (2) Apply ROR filter
  • ELDR (2) Apply ELDR filter

Product

  • RNAscope Multiplex Fluorescent Assay (56) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (47) Apply RNAscope filter
  • RNAscope 2.0 Assay (44) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Red assay (39) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Fluorescent Multiplex Assay (37) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 HD Brown Assay (24) Apply RNAscope 2.5 HD Brown Assay filter
  • BASEscope Assay RED (9) Apply BASEscope Assay RED filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (8) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.5 LS Assay (5) Apply RNAscope 2.5 LS Assay filter
  • TBD (5) Apply TBD filter
  • Basescope (3) Apply Basescope filter
  • RNAscope 2.5 HD Duplex (3) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope Multiplex Fluorescent v2 (3) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope 2.5 VS Assay (2) Apply RNAscope 2.5 VS Assay filter
  • DNAscope HD Duplex Reagent Kit (1) Apply DNAscope HD Duplex Reagent Kit filter

Research area

  • Cancer (120) Apply Cancer filter
  • lncRNA (110) Apply lncRNA filter
  • Neuroscience (74) Apply Neuroscience filter
  • LncRNAs (41) Apply LncRNAs filter
  • Development (24) Apply Development filter
  • Infectious Disease (16) Apply Infectious Disease filter
  • Inflammation (12) Apply Inflammation filter
  • Stem Cells (10) Apply Stem Cells filter
  • Covid (9) Apply Covid filter
  • Other (7) Apply Other filter
  • Bone (5) Apply Bone filter
  • Immunotherapy (4) Apply Immunotherapy filter
  • Infectious (4) Apply Infectious filter
  • Developmental (3) Apply Developmental filter
  • HPV (3) Apply HPV filter
  • Kidney (3) Apply Kidney filter
  • Pain (3) Apply Pain filter
  • Stem cell (3) Apply Stem cell filter
  • Alzheimer's Disease (2) Apply Alzheimer's Disease filter
  • Autism (2) Apply Autism filter
  • CGT (2) Apply CGT filter
  • Endocrinology (2) Apply Endocrinology filter
  • Heart (2) Apply Heart filter
  • Injury (2) Apply Injury filter
  • Long Covid (2) Apply Long Covid filter
  • Metabolism (2) Apply Metabolism filter
  • osteoarthritis (2) Apply osteoarthritis filter
  • Other: Cell Biology (2) Apply Other: Cell Biology filter
  • Age-related macular degeneration (1) Apply Age-related macular degeneration filter
  • Aging (1) Apply Aging filter
  • Circadian clock (1) Apply Circadian clock filter
  • Feeding Behavior (1) Apply Feeding Behavior filter
  • Hearing (1) Apply Hearing filter
  • HIV (1) Apply HIV filter
  • Huntington's Disease (1) Apply Huntington's Disease filter
  • Infectious Disease: Ebola virus disease (1) Apply Infectious Disease: Ebola virus disease filter
  • Influenza A (1) Apply Influenza A filter
  • Jet Leg (1) Apply Jet Leg filter
  • Lnc (1) Apply Lnc filter
  • Lung (1) Apply Lung filter
  • Metabolic (1) Apply Metabolic filter
  • MicroRNAs (1) Apply MicroRNAs filter
  • Other: Eyes (1) Apply Other: Eyes filter
  • Other: Genomics (1) Apply Other: Genomics filter
  • Other: Heart (1) Apply Other: Heart filter
  • Other: Kidney (1) Apply Other: Kidney filter
  • Other: Liver (1) Apply Other: Liver filter
  • Other: Methods (1) Apply Other: Methods filter
  • Regeneration (1) Apply Regeneration filter
  • Skin (1) Apply Skin filter

Category

  • Publications (368) Apply Publications filter
Promoter Hypomethylation and Increased Expression of the Long Non-coding RNA LINC00152 Support Colorectal Carcinogenesis

Path and Oncol

2020 Apr 20

Orsolya Galamb, Alexandra Kalm�r, Anna Sebesty�n, Titanilla Dank�, Csilla Kriston, Istv�n F?ri, P�ter Holl�si, Istv�n Csabai, Barnab�s Wichmann, Tibor Kren�cs, Barbara Kinga Bart�k, Zs�fia Brigitta Nagy, S�ra Zsigrai, G�bor Barna, Zsolt Tulassay, P�ter Igaz & B�la Moln�r
| DOI: 10.1007/s12253-020-00800-8

Up-regulation of the long non-coding RNA LINC00152 can contribute to cancer development, proliferation and invasion, including colorectal cancer, however, its mechanism of action in colorectal carcinogenesis and progression is only insufficiently understood. In this work we correlated LINC00152 expression with promoter DNA methylation changes in colorectal tissues along the normal-adenoma-carcinoma sequence and studied the effects of LINC00152 silencing on the cell cycle regulation and on the whole transcriptome in colon carcinoma cells using cell and molecular biology techniques. LINC00152 was significantly up-regulated in adenoma and colorectal cancer (p?
Xylosyltransferase I mediates the synthesis of proteoglycans with long glycosaminoglycan chains and controls chondrocyte hypertrophy and collagen fibers organization of in the growth plate

Cell death & disease

2023 Jun 09

Taieb, M;Ghannoum, D;Barré, L;Ouzzine, M;
PMID: 37296099 | DOI: 10.1038/s41419-023-05875-0

Genetic mutations in the Xylt1 gene are associated with Desbuquois dysplasia type II syndrome characterized by sever prenatal and postnatal short stature. However, the specific role of XylT-I in the growth plate is not completely understood. Here, we show that XylT-I is expressed and critical for the synthesis of proteoglycans in resting and proliferative but not in hypertrophic chondrocytes in the growth plate. We found that loss of XylT-I induces hypertrophic phenotype-like of chondrocytes associated with reduced interterritorial matrix. Mechanistically, deletion of XylT-I impairs the synthesis of long glycosaminoglycan chains leading to the formation of proteoglycans with shorter glycosaminoglycan chains. Histological and Second Harmonic Generation microscopy analysis revealed that deletion of XylT-I accelerated chondrocyte maturation and prevents chondrocytes columnar organization and arrangement in parallel of collagen fibers in the growth plate, suggesting that XylT-I controls chondrocyte maturation and matrix organization. Intriguingly, loss of XylT-I induced at embryonic stage E18.5 the migration of progenitor cells from the perichondrium next to the groove of Ranvier into the central part of epiphysis of E18.5 embryos. These cells characterized by higher expression of glycosaminoglycans exhibit circular organization then undergo hypertrophy and death creating a circular structure at the secondary ossification center location. Our study revealed an uncovered role of XylT-I in the synthesis of proteoglycans and provides evidence that the structure of glycosaminoglycan chains of proteoglycans controls chondrocyte maturation and matrix organization.
Long noncoding RNA 01534 maintains cancer stemness by downregulating endoplasmic reticulum stress response in colorectal cancer

Annals of Gastroenterological Surgery

2022 Dec 29

Ichihara, M;Takahashi, H;Nishida, N;Ivan, C;Okuzaki, D;Yokoyama, Y;Ohtsuka, M;Miyoshi, N;Uemura, M;Tanaka, S;Calin, G;Mori, M;Doki, Y;Eguchi, H;Yamamoto, H;
| DOI: 10.1002/ags3.12649

Background Studies have shown that cancer stemness and the endoplasmic reticulum (ER) stress response are inversely regulated in colorectal cancer (CRC), but the mechanism has not been fully clarified. Long noncoding RNAs (lncRNAs) play key roles in cancer progression and metastasis. In this study we investigated lncRNA 01534 (LINC01534) as a possible modulator between cancer stemness and ER stress response. Methods In vitro experiments using CRC cell lines were performed to explore a possible role of LINC01534. The expression of LINC01534 in clinical CRC samples was assessed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and in situ hybridization. Results Silencing LINC01534 led to suppression of cell proliferation, invasiveness, and cell cycle progression at the G2-M phase, and promoted apoptosis. Moreover, we found that silencing LINC01534 suppressed cancer stemness, while it activated the ER stress response, especially through the PERK/eIF2α signaling pathway. In situ hybridization revealed LINC01534 was expressed in tumor cells and upregulated in CRC tissues compared with normal epithelium. A survival survey indicated that high LINC01534 expression was significantly associated with shorter overall survival in 187 CRC patients. Conclusion This is the first report on LINC01534 in human cancer. Our findings suggest that LINC01534 may be an important modulator of the maintenance of cancer stemness and suppression of the ER stress response, and that it could be a novel prognostic factor in CRC.
Long noncoding RNA-mediated activation of PROTOR1/PRR5-AKT signaling shunt downstream of PI3K in triple-negative breast cancer

Proceedings of the National Academy of Sciences of the United States of America

2022 Oct 25

Tu, Z;Hu, Y;Raizada, D;Bassal, MA;Tenen, DG;Karnoub, AE;
PMID: 36269860 | DOI: 10.1073/pnas.2203180119

The phosphoinositide 3-kinase (PI3K) pathway represents the most hyperactivated oncogenic pathway in triple-negative breast cancer (TNBC), a highly aggressive tumor subtype encompassing ∼15% of breast cancers and which possesses no targeted therapeutics. Despite critical contributions of its signaling arms to disease pathogenesis, PI3K pathway inhibitors have not achieved expected clinical responses in TNBC, owing largely to a still-incomplete understanding of the compensatory cascades that operate downstream of PI3K. Here, we investigated the contributions of long noncoding RNAs (lncRNAs) to PI3K activities in clinical and experimental TNBC and discovered a prominent role for LINC01133 as a PI3K-AKT signaling effector. We found that LINC01133 exerted protumorigenic roles in TNBC and that it governed a previously undescribed mTOR Complex 2 (mTORC2)-dependent pathway that activated AKT in a PI3K-independent manner. Mechanistically, LINC01133 induced the expression of the mTORC2 component PROTOR1/PRR5 by competitively coupling away its negative messenger RNA (mRNA) regulator, the heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2B1). PROTOR1/PRR5 in turn was sufficient and necessary for LINC01133-triggered functions, casting previously unappreciated roles for this Rictor-binding protein in cellular signaling and growth. Notably, LINC01133 antagonism undermined cellular growth, and we show that the LINC01133-PROTOR1/PRR5 pathway was tightly associated with TNBC poor patient survival. Altogether, our findings uncovered a lncRNA-driven signaling shunt that acts as a critical determinant of malignancy downstream of the PI3K pathway and as a potential RNA therapeutic target in clinical TNBC management.
Mice With RIP-Cre Mediated Deletion of the Long Non-Coding RNA Meg3 Show Normal Pancreatic Islets and Enlarged Pituitary

Journal of the Endocrine Society

2022 Sep 13

Parekh, V;Sun, H;Chen, M;Weinstein, L;Agarwal, S;
| DOI: 10.1210/jendso/bvac141

Maternally expressed gene 3 (MEG3) is a long non-coding RNA (lncRNA) that has been implicated as a tumor suppressor. The expression of MEG3 RNA is downregulated in various human tumors, including pituitary adenoma and pancreatic islet tumors due to MEG3 gene deletion or DNA hypermethylation. Mouse models with conventional germline deletion of Meg3 have shown that Meg3 is essential for perinatal or postnatal development and survival. However, a direct role of Meg3 loss in tumorigenesis has not been shown. To observe a causal relationship between Meg3 loss and tumorigenesis, we have generated a mouse model with conditional deletion of Meg3 mediated by the RIP-Cre transgene which initiated Meg3 deletion in pancreatic islet β-cells and anterior pituitary. Meg3 loss did not lead to the development of islet tumors. Interestingly, RIP-Cre mediated Meg3 loss led to the development of an enlarged pituitary. The genes in the Meg3 region are transcribed together as a 210 kb RNA that is processed into Meg3 and other transcripts. Whether these tandem transcripts play a functional role in the growth of pancreatic endocrine cells and pituitary cells remains to be determined. Our mouse model shows that Meg3 loss leads to hyperplasia in the pituitary and not in pancreatic islets, thus serving as a valuable model to study pathways associated with pituitary cell proliferation and function. Future mouse models with specific inactivation of Meg3 alone or other transcripts in the Meg3 polycistron are warranted to study tissue-specific effects on initiating neoplasia and tumor development.
Long Non-Coding RNA LINC00052 Targets miR-548p/Notch2/Pyk2 to Modulate Tumor Budding and Metastasis of Human Breast Cancer

Biochemical genetics

2022 Aug 02

Huang, X;Yu, J;Lai, S;Li, Z;Qu, F;Fu, X;Li, Q;Zhong, X;Zhang, D;Li, H;
PMID: 35918619 | DOI: 10.1007/s10528-022-10255-y

Abnormal expression of long non-coding RNAs (lncRNAs) is involved in many pathological processes of cancers. However, the role of lncRNA LINC00052 in breast cancer progression is still unclear. Here, LINC00052 expression was detected by in situ hybridization and quantitative real-time PCR assays. Cell Counting Kit-8, wound healing, and transwell assays were used to investigate changes in the proliferation, migration, and invasion of breast cancer cells. MiR-548p was found associated with LINC00052 or Notch2 by RNA pull-down, dual-luciferase reporter, and qRT-PCR assays. The effect of LINC00052 on lung metastasis was explored through in vivo experiments. High LINC00052 expression was observed in breast cancer tissues and cells. LINC00052 silencing inhibited the proliferation, migration, and invasion of MCF7 cells, and LINC00052 overexpression produced the opposite results. MiR-548p, a target gene of LINC00052, partially rescued the effects of LINC00052 on proliferation, migration, and invasion of MCF7. Notch2 was the target of miR-548p and LINC00052 could promote Notch2 expression. Moreover, the phosphorylation of proline-rich tyrosine kinase 2 (Pyk2), a downstream factor of Notch2, was increased by LINC00052, and a Pyk2 mutant could inhibit the cell migration and invasion induced by LINC00052 overexpression in MDA-MB-468 cells, which was similar to the function of the miR-548p mimic. We further demonstrated that LINC00052 exacerbated the metastases of breast cancer cells in vivo. Our research demonstrated that LINC00052 is highly expressed in breast cancer and promotes breast cancer proliferation, migration, and invasion via the miR-548p/Notch2/Pyk2 axis. LINC00052 could serve as a potential therapeutic target for breast cancer.
Long noncoding RNA BCRP3 stimulates VPS34 and autophagy activities to promote protein homeostasis and cell survival

Journal of biomedical science

2022 May 10

Yan, RL;Luan, CL;Liao, CC;Liu, LH;Chen, FY;Chen, HY;Chen, RH;
PMID: 35538574 | DOI: 10.1186/s12929-022-00815-0

Autophagy plays important roles in cell homeostasis and protein quality control. Long non-coding RNAs (lncRNAs) have been revealed as an emerging class of autophagy regulators, but the majority of them function in regulating the expression of autophagy-related genes. LncRNAs that directly act on the core autophagic proteins remain to be explored.Immunofluorescence staining and Western blotting were used to evaluate the function of BCRP3 in autophagy and aggrephagy. RNA immunoprecipitation and in vitro RNA-protein binding assay were used to evaluate the interaction of BCRP3 with its target proteins. Phosphatidylinositol 3-phosphate ELISA assay was used to quantify the enzymatic activity of VPS34 complex. qRT-PCR analysis was used to determine BCRP3 expression under stresses, whereas mass spectrometry and Gene Ontology analyses were employed to evaluate the effect of BCRP3 deficiency on proteome changes.We identified lncRNA BCRP3 as a positive regulator of autophagy. BCRP3 was mainly localized in the cytoplasm and bound VPS34 complex to increase its enzymatic activity. In response to proteotoxicity induced by proteasome inhibition or oxidative stress, BCRP3 was upregulated to promote aggrephagy, thereby facilitating the clearance of ubiquitinated protein aggregates. Proteomics analysis revealed that BCRP3 deficiency under proteotoxicity resulted in a preferential accumulation of proteins acting in growth inhibition, cell death, apoptosis, and Smad signaling. Accordingly, BCRP3 deficiency in proteotoxic cells compromised cell proliferation and survival, which was mediated in part through the upregulation of TGF-β/Smad2 pathway.Our study identifies BCRP3 as an RNA activator of the VPS34 complex and a key role of BCRP3-mediated aggrephagy in protein quality control and selective degradation of growth and survival inhibitors to maintain cell fitness.
Mechanism of Long Noncoding RNA HOTAIR in Nucleus Pulposus Cell Autophagy and Apoptosis in Intervertebral Disc Degeneration

Evidence-based complementary and alternative medicine : eCAM

2022 Jan 04

Zhang, S;Song, S;Cui, W;Liu, X;Sun, Z;
PMID: 35027936 | DOI: 10.1155/2022/8504601

Intervertebral disc degeneration (IDD) contributes to cervical and lumbar diseases. Long noncoding RNAs (lncRNAs) are implicated in IDD. This study explored the mechanism of lncRNA HOTAIR in IDD.Normal and degenerative nucleus pulposus (NP) cells were isolated from NP tissues obtained in intervertebral disc surgery. Cell morphology was observed by immunocytochemistry staining and toluidine blue staining. NP cell markers were detected by RT-qPCR. Proliferation was detected by MTT assay. Autophagy-related proteins were detected by Western blot. Autophagosome was observed by monodansylcadaverine fluorescence staining. Apoptosis was detected by TUNEL staining and flow cytometry. si-HOTAIR and/or miR-148a inhibitor was introduced into degenerative NP cells. Binding relationships among HOTAIR, miR-148a, and PTEN were predicted and verified by dual-luciferase reporter assay and RNA pull-down. Finally, IDD rat models were established. Rat caudal intervertebral discs were assessed by HE staining. Expressions of HOTAIR, miR-148a, and PTEN were determined by RT-qPCR.HOTAIR was highly expressed in degenerative NP cells (p < 0.05). si-HOTAIR inhibited degenerative NP cell apoptosis and autophagy (p < 0.05). HOTAIR upregulated PTEN as a sponge of miR-148a. miR-148a was poorly expressed in degenerative NP cells. miR-148a deficiency partially reversed the inhibition of si-HOTAIR on degenerative NP cell autophagy and apoptosis (all p < 0.05). In vivo assay confirmed that si-HOTAIR impeded autophagy and apoptosis in intervertebral disc tissues, thus improving pathological injury in IDD rats (all p < 0.05).LncRNA HOTAIR promoted NP cell autophagy and apoptosis via promoting PTEN expression as a ceRNA of miR-148a in IDD.
N6-methyladenosine-modified long non-coding RNA AGAP2-AS1 promotes psoriasis pathogenesis via miR-424-5p/AKT3 axis

Journal of Dermatological Science

2021 Nov 01

Xian, J;Shang, M;Dai, Y;Wang, Q;Long, X;Li, J;Cai, Y;Xia, C;Peng, X;
| DOI: 10.1016/j.jdermsci.2021.11.007

Background Psoriasis is a chronic, complicated, and recurrent inflammatory skin disease. However, the precise molecular mechanisms remain largely elusive and the present treatment is unsatisfactory. Objective This study aimed to unravel the functions of long noncoding RNA (lncRNA) AGAP2-AS1 and its biological mechanism in psoriasis pathogenesis, hinting for the new therapeutic targets in psoriasis. Methods The expression of AGAP2-AS1 in the skin tissue of psoriasis patients and healthy controls were detected by qRT-PCR and RNAscope™. Cell Counting Kit‑8 (CCK8) and clone formation assays were utilized to assess proliferation. Methylated RNA immunoprecipitation (MeRIP) was performed to detect the N6-methyladenosine (m6A) modification. RNA immunoprecipitation (RIP) was used to detect the interaction of AGAP2-AS1 with YTH domain family 2(YTHDF2). The relationships among AGAP2-AS1, miR-424-5p and AKT3 were examined by dual-luciferase reporter assay and RIP assay. Results We found that AGAP2-AS1 level was upregulated in the skin tissue of psoriasis patients than that of healthy controls and AGAP2-AS1 could promote proliferation and inhibit apoptosis of keratinocytes. Methyltransferase like 3(METTL3)-mediated m6A modification suppressed the expression of AGAP2-AS1 via YTHDF2-dependent AGAP2-AS1 stability. Thus, downregulation of METTL3 resulted in the upregulation of AGAP2-AS1 in psoriasis. AGAP2-AS1 functioned as a competitive endogenous RNA by sponging miR-424-5p to upregulate AKT3, activate AKT/mTOR pathway, as well as promote cell proliferation in keratinocytes. Conclusion AGAP2-AS1 is upregulated in the skin tissue of psoriasis patients and m6A methylation was involved in its upregulation. AGAP2-AS1 promotes keratinocyte proliferation through miR-424-5p/AKT/mTOR axis and may be a promising target for psoriasis therapy.
Oncogenic HPV promotes the expression of the long noncoding RNA lnc-FANCI-2 through E7 and YY1

Proceedings of the National Academy of Sciences of the United States of America

2021 Jan 19

Liu, H;Xu, J;Yang, Y;Wang, X;Wu, E;Majerciak, V;Zhang, T;Steenbergen, RDM;Wang, HK;Banerjee, NS;Li, Y;Lu, W;Meyers, C;Zhu, J;Xie, X;Chow, LT;Zheng, ZM;
PMID: 33436409 | DOI: 10.1073/pnas.2014195118

Long noncoding RNAs (lncRNAs) play diverse roles in biological processes, but their expression profiles and functions in cervical carcinogenesis remain unknown. By RNA-sequencing (RNA-seq) analyses of 18 clinical specimens and selective validation by RT-qPCR analyses of 72 clinical samples, we provide evidence that, relative to normal cervical tissues, 194 lncRNAs are differentially regulated in high-risk (HR)-HPV infection along with cervical lesion progression. One such lncRNA, lnc-FANCI-2, is extensively characterized because it is expressed from a genomic locus adjacent to the FANCI gene encoding an important DNA repair factor. Both genes are up-regulated in HPV lesions and in in vitro model systems of HR-HPV18 infection. We observe a moderate reciprocal regulation of lnc-FANCI-2 and FANCI in cervical cancer CaSki cells. In these cells, lnc-FANCI-2 is transcribed from two alternative promoters, alternatively spliced, and polyadenylated at one of two alternative poly(A) sites. About 10 copies of lnc-FANCI-2 per cell are detected preferentially in the cytoplasm. Mechanistically, HR-HPVs, but not low-risk (LR)-HPV oncogenes induce lnc-FANCI-2 in primary and immortalized human keratinocytes. The induction is mediated primarily by E7, and to a lesser extent by E6, mostly independent of p53/E6AP and pRb/E2F. We show that YY1 interacts with an E7 CR3 core motif and transactivates the promoter of lnc-FANCI-2 by binding to two critical YY1-binding motifs. Moreover, HPV18 increases YY1 expression by reducing miR-29a, which targets the 3' untranslated region of YY1 mRNA. These data have provided insights into the mechanisms of how HR-HPV infections contribute to cervical carcinogenesis.
LincIN, a novel NF90-binding long non-coding RNA, is overexpressed in advanced breast tumors and involved in metastasis.

Breast Cancer Res.

2017 May 30

Jiang Z, Slater CM, Zhou Y, Devarajan K, Ruth KJ, Li Y, Cai KQ, Daly M, Chen X.
PMID: 28558830 | DOI: 10.1186/s13058-017-0853-2

Abstract

BACKGROUND:

Recent genome-wide profiling by sequencing and distinctive chromatin signatures has identified thousands of long non-coding RNA (lncRNA) species (>200 nt). LncRNAs have emerged as important regulators of gene expression, involving in both developmental and pathological processes. While altered expression of lncRNAs has been observed in breast cancer development, their roles in breast cancer progression and metastasis are still poorly understood.

METHODS:

To identify novel breast cancer-associated lncRNA candidates, we employed a high-density SNP array-based approach to uncover intergenic lncRNA genes that are aberrantly expressed in breast cancer. We first evaluated the potential value as a breast cancer prognostic biomarker for one breast cancer-associated lncRNA, LincIN, using a breast cancer cohort retrieved from The Cancer Genome Atlas (TCGA) Data Portal. Then we characterized the role of LincIN in breast cancer progression and metastasis by in vitro invasion assay and a mouse tail vein injection metastasis model. To study the action of LincIN, we identified LincIN-interacting protein partner(s) by RNA pull-down experiments followed with protein identification by mass spectrometry.

RESULTS:

High levels of LincIN expression are frequently observed in tumors compared to adjacent normal tissues, and are strongly associated with aggressive breast cancer. Importantly, analysis of TCGA data further suggest that high expression of LincIN is associated with poor overall survival in patients with breast cancer (P = 0.044 and P = 0.011 after adjustment for age). The functional experiments demonstrate that knockdown of LincIN inhibits tumor cell migration and invasion in vitro, which is supported by the results of transcriptome analysis in the LincIN-knockdown cells. Furthermore, knockdown of LincIN diminishes lung metastasis in a mouse tail vein injection model. We also identified a LincIN-binding protein, NF90, through which overexpression of LincIN may repress p21 protein expression by inhibiting its translation, and upregulation of p21 by LincIN knockdown may be associated with less aggressive metastasis phenotypes.

CONCLUSIONS:

Our studies provide clear evidence to support LincIN as a new regulator of tumor progression-metastasis at both transcriptional and translational levels and as a promising prognostic biomarker for breast cancer.

The Long Non-Coding RNA DNM3OS is a Reservoir of FibromiRs with Major Functions in Lung Fibroblast Response to TGF-β and Pulmonary Fibrosis.

Am J Respir Crit Care Med.

2019 Apr 09

Savary G, Dewaeles E, Diazzi S, Buscot M, Nottet N, Fassy J, Courcot E, Henaoui IS, Lemaire J, Martis N, Van der Hauwaert C, Pons N, Magnone V, Leroy S, Hofman V, Plantier L, Lebrigand K, Paquet A, Lino Cardenas CL, Vassaux G, Hofman P, Günther A, Crestani B, Wallaert B, Rezzonico R, Brousseau T, Glowacki F, Bellusci S, Perrais M, Broly F, Barbry P, Marquette CH, Cauffiez C, Mari B, Pottier N.
PMID: 30964696 | DOI: 10.1164/rccm.201807-1237OC

Abstract

RATIONALE:

Given the paucity of effective treatments for Idiopathic Pulmonary Fibrosis (IPF), new insights into the deleterious mechanisms controlling lung fibroblast activation, the key cell type driving the fibrogenic process, are essential to develop new therapeutic strategies. Transforming growth factor β (TGF-β) is the main pro-fibrotic factor, but its inhibition is associated with severe side effects due to its pleiotropic role.

OBJECTIVES:

We hypothesized that downstream non-coding effectors of TGF-β in fibroblasts may represent new effective therapeutic targets whose modulation may be well-tolerated.

METHODS:

We investigated the whole non-coding fraction of TGF-β-stimulated lung fibroblast transcriptome to identify new genomic determinants of lung fibroblast differentiation into myofibroblast. Differential expression of the long non-coding RNA DNM3OS and its associated miRNAs was validated in a murine model of pulmonary fibrosis and in IPF tissue samples. Distinct and complementary antisense oligonucleotide-based strategies aiming at interfering with DNM3OS were used to elucidate the role of DNM3OS and its associated miRNAs in IPF pathogenesis.

MEASUREMENTS AND MAIN RESULTS:

We identified DNM3OS as a fibroblast-specific critical downstream effector of TGF-β-induced lung myofibroblast activation. Mechanistically, DNM3OS regulates this process in trans by giving rise to three distinct profibrotic mature miRNAs (i.e. miR-199a-5p/3p and miR-214-3p), which influence both SMAD and non-SMAD components of TGF-β signaling in a multifaceted way. In vivo, we showed that interfering with DNM3OS function not only prevents lung fibrosis but also improves established pulmonary fibrosis.

CONCLUSION:

Pharmacological approaches aiming at interfering with DNM3OS may represent new effective therapeutic strategies in IPF.

Pages

  • « first
  • ‹ previous
  • …
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?