ACD can configure probes for the various manual and automated assays for INSULIN for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Endocrinology
2022 Oct 01
Wang, W;Xu, M;Yue, J;Zhang, Q;Nie, X;Jin, Y;Zhang, Z;
PMID: 35894166 | DOI: 10.1210/endocr/bqac115
Molecular Metabolism
2021 Mar 01
Peris-Sampedro, F;Stoltenborg, I;Le May, M;Zigman, J;Adan, R;Dickson, S;
| DOI: 10.1016/j.molmet.2021.101223
J Neurosci.
2016 Nov 03
Domi E, Uhrig S, Soverchia L, Spanagel R, Hansson AC, Barbier E, Heilig M, Ciccocioppo R, Ubaldi M.
PMID: 27810934 | DOI: 10.1523/JNEUROSCI.4127-15.2016
Molecular Metabolism
2018 Aug 04
Kok BP, Galmozzi A, Littlejohn NK, Albert V, Godio C, Kim W, Kim SM, Bland JS, Grayson N, Fang M, Meyerhof W, Siuzdak G, Srinivasan S, Behrens M, Saez E.
PMID: - | DOI: 10.1016/j.molmet.2018.07.013
Abstract
Objectives
Extracts of the hops plant have been shown to reduce weight and insulin resistance in rodents and humans, but elucidation of the mechanisms responsible for these benefits has been hindered by the use of heterogeneous hops-derived mixtures. Because hop extracts are used as flavoring agents for their bitter properties, we hypothesized that bitter taste receptors (Tas2rs) could be mediating their beneficial effects in metabolic disease. Studies have shown that exposure of cultured enteroendocrine cells to bitter tastants can stimulate release of hormones, including glucagon-like peptide 1 (GLP-1). These findings have led to the suggestion that activation of Tas2rs may be of benefit in diabetes, but this tenet has not been tested. Here, we have assessed the ability of a pure derivative of a hops isohumulone with anti-diabetic properties, KDT501, to signal through Tas2rs. We have further used this compound as a tool to systematically assess the impact of bitter taste receptor activation in obesity-diabetes.
Methods
KDT501 was tested in a panel of bitter taste receptor signaling assays. Diet-induced obese mice (DIO) were dosed orally with KDT501 and acute effects on glucose homeostasis determined. A wide range of metabolic parameters were evaluated in DIO mice chronically treated with KDT501 to establish the full impact of activating gut bitter taste signaling.
Results
We show that KDT501 signals through Tas2r108, one of 35 mouse Tas2rs. In DIO mice, acute treatment stimulated GLP-1 secretion and enhanced glucose tolerance. Chronic treatment caused weight and fat mass loss, increased energy expenditure, enhanced glucose tolerance and insulin sensitivity, normalized plasma lipids, and induced broad suppression of inflammatory markers. Chronic KDT501 treatment altered enteroendocrine hormone levels and bile acid homeostasis and stimulated sustained GLP-1 release. Combined treatment with a dipeptidyl peptidase IV inhibitor amplified the incretin-based benefits of this pure isohumulone.
Conclusions
Activation of Tas2r108 in the gut results in a remodeling of enteroendocrine hormone release and bile acid metabolism that ameliorates multiple features of metabolic syndrome. Targeting extraoral bitter taste receptors may be useful in metabolic disease.
Journal of molecular medicine (Berlin, Germany)
2023 Jan 12
Sych, K;Nold, SP;Pfeilschifter, J;Vutukuri, R;Meisterknecht, J;Wittig, I;Frank, S;Goren, I;
PMID: 36633604 | DOI: 10.1007/s00109-022-02280-6
Diabetologia
2022 May 26
Yoon, JS;Sasaki, S;Velghe, J;Lee, MYY;Winata, H;Nian, C;Lynn, FC;
PMID: 35616696 | DOI: 10.1007/s00125-022-05718-1
Sci Rep.
2017 Sep 20
Katayama H, Tamai K, Shibuya R, Nakamura M, Mochizuki M, Yamaguchi K, Kawamura S, Tochigi T, Sato I, Okanishi T, Sakurai K, Fujibuchi W, Arai Y, Satoh K.
PMID: 28931862 | DOI: 10.1038/s41598-017-12191-z
Renal cell carcinoma (RCC) is one of the most lethal urologic cancers. About one-third of RCC patients already have distal metastasis at the time of diagnosis. There is growing evidence that Hox antisense intergenic RNA (HOTAIR) plays essential roles in metastasis in several types of cancers. However, the precise mechanism by which HOTAIR enhances malignancy remains unclear, especially in RCC. Here, we demonstrated that HOTAIR enhances RCC-cell migration by regulating the insulin growth factor-binding protein 2 (IGFBP2) expression. HOTAIR expression in tumors was significantly correlated with nuclear grade, lymph-node metastasis, and lung metastasis. High HOTAIR expression was associated with a poor prognosis in both our dataset and The Cancer Genome Atlas dataset. Migratory capacity was enhanced in RCC cell lines in a HOTAIR-dependent manner. HOTAIR overexpression accelerated tumorigenicity and lung metastasis in immunodeficient mice. Microarray analysis revealed that IGFBP2 expression was upregulated in HOTAIR-overexpressing cells compared with control cells. The enhanced migration activity of HOTAIR-overexpressing cells was attenuated by IGFBP2 knockdown. IGFBP2 and HOTAIR were co-expressed in clinical RCC samples. Our findings suggest that the HOTAIR-IGFBP2 axis plays critical roles in RCC metastasis and may serve as a novel therapeutic target for advanced RCC.
Oncotarget
2018 Dec 25
Heckl SM, Pellinghaus M, Krüger S, Bosselmann C, Wilhelm F, Behrens HM, Schreiber S, Röcken C.
PMID: 30680065 | DOI: 10.18632/oncotarget.26490
Abstract
BACKGROUND:
Metabolic reprogramming in cancer encompasses the insulin receptor (IR) as a player of energy homeostasis and proliferation. We aimed to characterize vascular (VIR) and epithelial (EIR) IR expression in CRC and correlate it with clinico-pathological parameters and survival.
METHODS:
1580 primary CRCs were explored by immunohistochemistry for evaluation of VIR and EIR. Subgroup analyses included in situhybridization for IR isoform A (IR-A) and DNA mismatch repair protein immunohistochemistry. Clinico-pathological and survival parameters were studied.
RESULTS:
High VIR was evident in 63.5% of all CRC samples and was associated with T-stage (P = 0.005). EIR was present in 72.2% and was associated with lower T-stages (P = 0.006) and UICC-stages (P < 0.001). EIR negativity was associated with increased metastasis (P =0.028), nodal spread (P < 0.001), lymphatic invasion (P = 0.008) and a decreased tumor-specific (P = 0.011) and overall survival (P = 0.007; 95%-C.I.: 44.5-84.1). EIR negativity in UICC-stage II was associated with a significantly worse tumor-specific (P = 0.045) and overall (P =0.043) survival. IR-A was expressed in CRC vessels and cells.
CONCLUSIONS:
We demonstrate VIR to be frequent in CRC and characterize EIR negativity as an important prognostic risk factor. The association between EIR negativity and worse survival in UICC-stage II should be prospectively evaluated for an application in therapeutic algorithms.
Scientific reports
2023 Jan 06
Patel, RS;Lui, A;Hudson, C;Moss, L;Sparks, RP;Hill, SE;Shi, Y;Cai, J;Blair, LJ;Bickford, PC;Patel, NA;
PMID: 36609440 | DOI: 10.1038/s41598-022-27126-6
Molecular metabolism
2022 Sep 02
Patel, S;Haider, A;Alvarez-Guaita, A;Bidault, G;El-Sayed Moustafa, JS;Guiu-Jurado, E;Tadross, JA;Warner, J;Harrison, J;Virtue, S;Scurria, F;Zvetkova, I;Blüher, M;Small, KS;O'Rahilly, S;Savage, DB;
PMID: 36064109 | DOI: 10.1016/j.molmet.2022.101589
Molecular Therapy - Nucleic Acids
2022 Jun 01
Bartesaghi, S;Wallenius, K;Hovdal, D;Liljeblad, M;Wallin, S;Dekker, N;Barlind, L;Davies, N;Seeliger, F;Winzell, M;Patel, S;Theisen, M;Brito, L;Bergenhem, N;Andersson, S;Peng, X;
| DOI: 10.1016/j.omtn.2022.04.010
Cell Metabolism
2018 Oct 04
King BC, Kulak K, Krus U, Rosberg R, Golec E, Wozniak K, Gomez MF, Zhang E, O'Connell DJ, Renström E, Blom AM.
PMID: - | DOI: 10.1016/j.cmet.2018.09.009
We show here that human pancreatic islets highly express C3, which is both secreted and present in the cytosol. Within isolated human islets, C3 expression correlates with type 2 diabetes (T2D) donor status, HbA1c, and inflammation. Islet C3 expression is also upregulated in several rodent diabetes models. C3 interacts with ATG16L1, which is essential for autophagy. Autophagy relieves cellular stresses faced by β cells during T2D and maintains cellular homeostasis. C3 knockout in clonal β cells impaired autophagy and led to increased apoptosis after exposure of cells to palmitic acid and IAPP. In the absence of C3, autophagosomes do not undergo fusion with lysosomes. Thus, C3 may be upregulated in islets during T2D as a cytoprotective factor against β cell dysfunction caused by impaired autophagy. Therefore, we revealed a previously undescribed intracellular function for C3, connecting the complement system directly to autophagy, with a broad potential importance in other diseases and cell types.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com