ACD can configure probes for the various manual and automated assays for INSULIN for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Endocrinology.
2018 Jul 27
Doyle ME, Fiori JL, Gonzalez Mariscal I, Liu QR, Goodstein E, Yang H, Shin YK, Santa-Cruz Calvo S, Indig FE, Egan JM.
PMID: 30060183 | DOI: 10.1210/en.2018-00534
We and others have reported that taste cells in taste buds express many peptides in common with cells in the gut and islets of Langerhans in the pancreas. Islets and taste bud cells express the hormones glucagon and ghrelin, the same ATP-sensitive potassium channel (KATP) responsible for depolarizing the insulin secreting beta (β) cell during glucose-induced insulin secretion, as well as the propeptide processing enzymes PC1/3 and PC2. Given the common expression of functionally specific proteins in taste buds and islets, it is surprising that no one has investigated whether insulin is synthesized in taste bud cells until now. Using immunofluorescence, we demonstrate the presence of insulin in mouse, rat and human taste bud cells. We further prove that insulin is synthesized in individual taste buds and not taken up from the parenchyma by: detection of the post-processing insulin molecule C-peptide and green fluorescence protein (GFP) in taste cells of both insulin 1- and insulin 2-GFP mice, and the presence of the mouse insulin transcript by in situ hybridization (ISH). In addition to our cytology data we measured the level of insulin transcript by qRT-PCR in the anterior and posterior lingual epithelium. These analyses show insulin is translated in the circumvallate and foliate papillae in the posterior but only insulin transcript was detected in the anterior fungiform papillae of rodent tongue. Thus, some taste cells are insulin synthesizing cells generated from a continually replenished source of precursor cells in adult mammalian lingual epithelium.
Diabetes.
2018 Jun 27
Xin Y, Gutierrez GD, Okamoto H, Kim J, Lee AH, Adler C, Ni M, Yancopoulos GD, Murphy AJ, Gromada J.
PMID: 29950394 | DOI: 10.2337/db18-0365
Proinsulin is a misfolding-prone protein making its biosynthesis in the endoplasmic reticulum (ER) a stressful event. Pancreatic β-cells overcome ER stress by activating the unfolded protein response (UPR) and reducing insulin production. This suggests that β-cells transition between periods of high insulin biosynthesis and UPR-mediated recovery from cellular stress. We now report the pseudotime ordering of single non-diabetic human β-cells detected by large-scale RNA sequencing. We identified major states with 1) low UPR and low insulin gene expression, 2) low UPR and high insulin gene expression or 3) high UPR and low insulin gene expression. The latter state was enriched for proliferating cells. Stressed human β-cells do not dedifferentiate and show little propensity for apoptosis. These data suggest that human β-cells transition between states with high rates of biosynthesis to fulfill the body's insulin requirements to maintain normal blood glucose levels and UPR-mediated recovery from ER stress due to high insulin production.
Cell Rep.
2017 Feb 14
Steculorum SM, Timper K, Engström Ruud L, Evers N, Paeger L, Bremser S, Kloppenburg P, Brüning JC.
PMID: 28199831 | DOI: 10.1016/j.celrep.2017.01.047
Uridine-diphosphate (UDP) and its receptor P2Y6 have recently been identified as regulators of AgRP neurons. UDP promotes feeding via activation of P2Y6 receptors on AgRP neurons, and hypothalamic UDP concentrations are increased in obesity. However, it remained unresolved whether inhibition of P2Y6 signaling pharmacologically, globally, or restricted to AgRP neurons can improve obesity-associated metabolic dysfunctions. Here, we demonstrate that central injection of UDP acutely promotes feeding in diet-induced obese mice and that acute pharmacological blocking of CNS P2Y6 receptors reduces food intake. Importantly, mice with AgRP-neuron-restricted inactivation of P2Y6 exhibit reduced food intake and fat mass as well as improved systemic insulin sensitivity with improved insulin action in liver. Our results reveal that P2Y6 signaling in AgRP neurons is involved in the onset of obesity-associated hyperphagia and systemic insulin resistance. Collectively, these experiments define P2Y6 as a potential target to pharmacologically restrict both feeding and systemic insulin resistance in obesity.
Nature Metabolism
2019 Mar 25
Morgantini C, Jager J, Li X, Levi L, Azzimato V, Sulen A, Barreby E, Xu C, Tencerova M, Näslund E, Kumar C, Verdeguer F, Straniero S, Hultenby K, Björkström NK, Ellis E, Rydén M, Kutter C, Hurrell T, Lauschke VM, Boucher J, Tomčala A, Krejčová G, Bajgar A and Aouadi M
| DOI: 10.1038/s42255-019-0044-9
FASEB J.
2017 Jul 07
Wang Q, Pronin AN, Levay K, Almaca J, Fornoni A, Caicedo A, Slepak VZ.
PMID: 28687610 | DOI: 10.1096/fj.201700197RR
In pancreatic β cells, muscarinic cholinergic receptor M3 (M3R) stimulates glucose-induced secretion of insulin. Regulator of G protein signaling (RGS) proteins are critical modulators of GPCR activity, yet their role in β cells remains largely unknown. R7 subfamily RGS proteins are stabilized by the G protein subunit Gβ5, such that the knockout of the Gnb5 gene results in degradation of all R7 subunits. We found that Gnb5 knockout in mice or in the insulin-secreting MIN6 cell line almost completely eliminates insulinotropic activity of M3R. Moreover, overexpression of Gβ5-RGS7 strongly promotes M3R-stimulated insulin secretion. Examination of this noncanonical mechanism in Gnb5-/- MIN6 cells showed that cAMP, diacylglycerol, or Ca2+ levels were not significantly affected. There was no reduction in the amplitude of free Ca2+ responses in islets from the Gnb5-/- mice, but the frequency of Ca2+ oscillations induced by cholinergic agonist was lowered by more than 30%. Ablation of Gnb5 impaired M3R-stimulated phosphorylation of ERK1/2. Stimulation of the ERK pathway in Gnb5-/- cells by epidermal growth factor restored M3R-stimulated insulin release to near normal levels. Identification of the novel role of Gβ5-R7 in insulin secretion may lead to a new therapeutic approach for improving pancreatic β-cell function.
Proc Natl Acad Sci U S A.
2018 Jul 23
Kleiner S, Gomez D, Megra B, Na E, Bhavsar R, Cavino K, Xin Y, Rojas J, Dominguez-Gutierrez G, Zambrowicz B, Carrat G, Chabosseau P, Hu M, Murphy AJ, Yancopoulos GD, Rutter GA, Gromada J.
PMID: 30038024 | DOI: 10.1073/pnas.1721418115
SLC30A8 encodes a zinc transporter that is primarily expressed in the pancreatic islets of Langerhans. In β-cells it transports zinc into insulin-containing secretory granules. Loss-of-function (LOF) mutations in SLC30A8 protect against type 2 diabetes in humans. In this study, we generated a knockin mouse model carrying one of the most common human LOF mutations for SLC30A8, R138X. The R138X mice had normal body weight, glucose tolerance, and pancreatic β-cell mass. Interestingly, in hyperglycemic conditions induced by the insulin receptor antagonist S961, the R138X mice showed a 50% increase in insulin secretion. This effect was not associated with enhanced β-cell proliferation or mass. Our data suggest that the SLC30A8 R138X LOF mutation may exert beneficial effects on glucose metabolism by increasing the capacity of β-cells to secrete insulin under hyperglycemic conditions.
Nat Commun
2020 Jan 23
Engstr�m Ruud L Pereira MMA, de Solis AJ, Fenselau H Br�ning JC
PMID: 31974377 | DOI: 10.1038/s41467-020-14291-3
J Physiol. 2019 Jan 9.
2019 Jan 09
Shi Z, Cassaglia PA, Pelletier NE, Brooks VL.
PMID: PMID: 30628058 | DOI: DOI:10.1113/JP277517
Molecular brain
2022 Sep 05
Cho, JH;Kim, K;Cho, HC;Lee, J;Kim, EK;
PMID: 36064426 | DOI: 10.1186/s13041-022-00962-3
J Neurosci.
2016 Nov 03
Domi E, Uhrig S, Soverchia L, Spanagel R, Hansson AC, Barbier E, Heilig M, Ciccocioppo R, Ubaldi M.
PMID: 27810934 | DOI: 10.1523/JNEUROSCI.4127-15.2016
Molecular Metabolism
2018 Aug 04
Kok BP, Galmozzi A, Littlejohn NK, Albert V, Godio C, Kim W, Kim SM, Bland JS, Grayson N, Fang M, Meyerhof W, Siuzdak G, Srinivasan S, Behrens M, Saez E.
PMID: - | DOI: 10.1016/j.molmet.2018.07.013
Abstract
Objectives
Extracts of the hops plant have been shown to reduce weight and insulin resistance in rodents and humans, but elucidation of the mechanisms responsible for these benefits has been hindered by the use of heterogeneous hops-derived mixtures. Because hop extracts are used as flavoring agents for their bitter properties, we hypothesized that bitter taste receptors (Tas2rs) could be mediating their beneficial effects in metabolic disease. Studies have shown that exposure of cultured enteroendocrine cells to bitter tastants can stimulate release of hormones, including glucagon-like peptide 1 (GLP-1). These findings have led to the suggestion that activation of Tas2rs may be of benefit in diabetes, but this tenet has not been tested. Here, we have assessed the ability of a pure derivative of a hops isohumulone with anti-diabetic properties, KDT501, to signal through Tas2rs. We have further used this compound as a tool to systematically assess the impact of bitter taste receptor activation in obesity-diabetes.
Methods
KDT501 was tested in a panel of bitter taste receptor signaling assays. Diet-induced obese mice (DIO) were dosed orally with KDT501 and acute effects on glucose homeostasis determined. A wide range of metabolic parameters were evaluated in DIO mice chronically treated with KDT501 to establish the full impact of activating gut bitter taste signaling.
Results
We show that KDT501 signals through Tas2r108, one of 35 mouse Tas2rs. In DIO mice, acute treatment stimulated GLP-1 secretion and enhanced glucose tolerance. Chronic treatment caused weight and fat mass loss, increased energy expenditure, enhanced glucose tolerance and insulin sensitivity, normalized plasma lipids, and induced broad suppression of inflammatory markers. Chronic KDT501 treatment altered enteroendocrine hormone levels and bile acid homeostasis and stimulated sustained GLP-1 release. Combined treatment with a dipeptidyl peptidase IV inhibitor amplified the incretin-based benefits of this pure isohumulone.
Conclusions
Activation of Tas2r108 in the gut results in a remodeling of enteroendocrine hormone release and bile acid metabolism that ameliorates multiple features of metabolic syndrome. Targeting extraoral bitter taste receptors may be useful in metabolic disease.
Diabetologia
2022 May 26
Yoon, JS;Sasaki, S;Velghe, J;Lee, MYY;Winata, H;Nian, C;Lynn, FC;
PMID: 35616696 | DOI: 10.1007/s00125-022-05718-1
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com