ACD can configure probes for the various manual and automated assays for INSULIN for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Cell Rep.
2019 May 14
Tencerova M, Frost M, Figeac F, Nielsen TK, Ali D, Lauterlein JL, Andersen TL, Haakonsson AK, Rauch A, Madsen JS, Ejersted C, Højlund K, Kassem M.
PMID: 31091445 | DOI: 10.1016/j.celrep.2019.04.066
Obesity is associated with increased risk for fragility fractures. However, the cellular mechanisms are unknown. Using a translational approach combining RNA sequencing and cellular analyses, we investigated bone marrow stromal stem cells (BM-MSCs) of 54 men divided into lean, overweight, and obese groups on the basis of BMI. Compared with BM-MSCs obtained from lean, obese BM-MSCs exhibited a shift of molecular phenotype toward committed adipocytic progenitors and increased expression of metabolic genes involved in glycolytic and oxidoreductase activity. Interestingly, compared with paired samples of peripheral adipose tissue-derived stromal cells (AT-MSCs), insulin signaling of obese BM-MSCs was enhanced and accompanied by increased abundance of insulin receptor positive (IR+) and leptin receptor positive (LEPR+) cells in BM-MSC cultures. Their hyper-activated metabolic state was accompanied by an accelerated senescence phenotype. Our data provide a plausible explanation for the bone fragility in obesity caused by enhanced insulin signaling leading to accelerated metabolic senescence of BM-MSCs.
Molecular metabolism
2022 Jun 09
Zhang, L;Koller, J;Gopalasingam, G;Qi, Y;Herzog, H;
PMID: 35691527 | DOI: 10.1016/j.molmet.2022.101525
Molecular Metabolism
2018 Sep 05
Mittenbühler MJ, Sprenger HG, Gruber S, Wunderlich CM, Kern L, Brüning JC, Wunderlich FT.
PMID: - | DOI: 10.1016/j.molmet.2018.08.010
The current obesity pandemic represents a major health burden, given that it predisposes to the development of numerous obesity-associated disorders. The obesity-derived adipokines not only impair systemic insulin action but also increase the incidence of hepatocellular carcinoma (HCC), a highly prevalent cancer with poor prognosis. Thus, worldwide incidences of HCC are expected to further increase, and defining the molecular as well as cellular mechanisms will allow for establishing new potential treatment options. The adipose tissue of obese individuals increases circulating leptin and interleukin-6 (IL-6) levels, which both share similar signaling capacities such as Signal Transducer and Activator of Transcription 3 (STAT3) and Phosphoinositide 3-kinase (PI3K)/Akt activation. While mouse models with deficient IL-6 signaling show an ameliorated but not absent Diethylnitrosamine (DEN)-induced HCC development, the morbid obesity in mice with mutant leptin signaling complicates the dissection of hepatic leptin receptor (LEPR) and IL-6 signaling in HCC development. Here we have investigated the function of compensating hepatic LEPR expression in HCC development of IL-6Rα-deficient mice.
We generated and characterized a mouse model of hepatic LEPR deficiency that was intercrossed with IL-6Rα-deficient mice. Cohorts of single and double knockout mice were subjected to the DEN-HCC model to ascertain liver cancer development and characterize metabolic alterations.
We demonstrate that both high-fat diet (HFD)-induced obesity and IL-6Rα deficiency induce hepatic Lepr expression. Consistently, double knockout mice show a further reduction in tumor burden in DEN-induced HCC when compared to control and single LepRL−KO/IL-6Rα knock out mice, whereas metabolism remained largely unaltered between the genotypes.
Our findings reveal a compensatory role for hepatic LEPR in HCC development of IL-6Rα-deficient mice and suggest hepatocyte-specific leptin signaling as promoter of HCC under obese conditions.
Endocrinology
2023 Jan 23
Cara, AL;Burger, LL;Beekly, BG;Allen, SJ;Henson, EL;Auchus, RJ;Myers, MG;Moenter, SM;Elias, CF;
PMID: 36683455 | DOI: 10.1210/endocr/bqad015
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com