ACD can configure probes for the various manual and automated assays for INSULIN for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Sci Rep.
2017 Sep 20
Katayama H, Tamai K, Shibuya R, Nakamura M, Mochizuki M, Yamaguchi K, Kawamura S, Tochigi T, Sato I, Okanishi T, Sakurai K, Fujibuchi W, Arai Y, Satoh K.
PMID: 28931862 | DOI: 10.1038/s41598-017-12191-z
Renal cell carcinoma (RCC) is one of the most lethal urologic cancers. About one-third of RCC patients already have distal metastasis at the time of diagnosis. There is growing evidence that Hox antisense intergenic RNA (HOTAIR) plays essential roles in metastasis in several types of cancers. However, the precise mechanism by which HOTAIR enhances malignancy remains unclear, especially in RCC. Here, we demonstrated that HOTAIR enhances RCC-cell migration by regulating the insulin growth factor-binding protein 2 (IGFBP2) expression. HOTAIR expression in tumors was significantly correlated with nuclear grade, lymph-node metastasis, and lung metastasis. High HOTAIR expression was associated with a poor prognosis in both our dataset and The Cancer Genome Atlas dataset. Migratory capacity was enhanced in RCC cell lines in a HOTAIR-dependent manner. HOTAIR overexpression accelerated tumorigenicity and lung metastasis in immunodeficient mice. Microarray analysis revealed that IGFBP2 expression was upregulated in HOTAIR-overexpressing cells compared with control cells. The enhanced migration activity of HOTAIR-overexpressing cells was attenuated by IGFBP2 knockdown. IGFBP2 and HOTAIR were co-expressed in clinical RCC samples. Our findings suggest that the HOTAIR-IGFBP2 axis plays critical roles in RCC metastasis and may serve as a novel therapeutic target for advanced RCC.
Oncotarget
2018 Dec 25
Heckl SM, Pellinghaus M, Krüger S, Bosselmann C, Wilhelm F, Behrens HM, Schreiber S, Röcken C.
PMID: 30680065 | DOI: 10.18632/oncotarget.26490
Abstract
BACKGROUND:
Metabolic reprogramming in cancer encompasses the insulin receptor (IR) as a player of energy homeostasis and proliferation. We aimed to characterize vascular (VIR) and epithelial (EIR) IR expression in CRC and correlate it with clinico-pathological parameters and survival.
METHODS:
1580 primary CRCs were explored by immunohistochemistry for evaluation of VIR and EIR. Subgroup analyses included in situhybridization for IR isoform A (IR-A) and DNA mismatch repair protein immunohistochemistry. Clinico-pathological and survival parameters were studied.
RESULTS:
High VIR was evident in 63.5% of all CRC samples and was associated with T-stage (P = 0.005). EIR was present in 72.2% and was associated with lower T-stages (P = 0.006) and UICC-stages (P < 0.001). EIR negativity was associated with increased metastasis (P =0.028), nodal spread (P < 0.001), lymphatic invasion (P = 0.008) and a decreased tumor-specific (P = 0.011) and overall survival (P = 0.007; 95%-C.I.: 44.5-84.1). EIR negativity in UICC-stage II was associated with a significantly worse tumor-specific (P = 0.045) and overall (P =0.043) survival. IR-A was expressed in CRC vessels and cells.
CONCLUSIONS:
We demonstrate VIR to be frequent in CRC and characterize EIR negativity as an important prognostic risk factor. The association between EIR negativity and worse survival in UICC-stage II should be prospectively evaluated for an application in therapeutic algorithms.
Brain, behavior, and immunity
2023 Mar 20
Landini, L;Marini, M;Souza Monteiro de Araujo, D;Romitelli, A;Montini, M;Albanese, V;Titiz, M;Innocenti, A;Bianchini, F;Geppetti, P;Nassini, R;De Logu, F;
PMID: 36940752 | DOI: 10.1016/j.bbi.2023.03.013
Molecular Metabolism
2018 Sep 05
Mittenbühler MJ, Sprenger HG, Gruber S, Wunderlich CM, Kern L, Brüning JC, Wunderlich FT.
PMID: - | DOI: 10.1016/j.molmet.2018.08.010
The current obesity pandemic represents a major health burden, given that it predisposes to the development of numerous obesity-associated disorders. The obesity-derived adipokines not only impair systemic insulin action but also increase the incidence of hepatocellular carcinoma (HCC), a highly prevalent cancer with poor prognosis. Thus, worldwide incidences of HCC are expected to further increase, and defining the molecular as well as cellular mechanisms will allow for establishing new potential treatment options. The adipose tissue of obese individuals increases circulating leptin and interleukin-6 (IL-6) levels, which both share similar signaling capacities such as Signal Transducer and Activator of Transcription 3 (STAT3) and Phosphoinositide 3-kinase (PI3K)/Akt activation. While mouse models with deficient IL-6 signaling show an ameliorated but not absent Diethylnitrosamine (DEN)-induced HCC development, the morbid obesity in mice with mutant leptin signaling complicates the dissection of hepatic leptin receptor (LEPR) and IL-6 signaling in HCC development. Here we have investigated the function of compensating hepatic LEPR expression in HCC development of IL-6Rα-deficient mice.
We generated and characterized a mouse model of hepatic LEPR deficiency that was intercrossed with IL-6Rα-deficient mice. Cohorts of single and double knockout mice were subjected to the DEN-HCC model to ascertain liver cancer development and characterize metabolic alterations.
We demonstrate that both high-fat diet (HFD)-induced obesity and IL-6Rα deficiency induce hepatic Lepr expression. Consistently, double knockout mice show a further reduction in tumor burden in DEN-induced HCC when compared to control and single LepRL−KO/IL-6Rα knock out mice, whereas metabolism remained largely unaltered between the genotypes.
Our findings reveal a compensatory role for hepatic LEPR in HCC development of IL-6Rα-deficient mice and suggest hepatocyte-specific leptin signaling as promoter of HCC under obese conditions.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com