Publication

UDP-glucuronate metabolism controls RIPK1-driven liver damage in nonalcoholic steatohepatitis

Hepatocyte apoptosis plays an essential role in the progression of nonalcoholic steatohepatitis (NASH). However, the molecular mechanisms underlying hepatocyte apoptosis remain unclear. Here, we identify UDP-glucose 6-dehydrogenase (UGDH) as a suppressor of NASH-associated liver damage by inhibiting RIPK1 kinase-dependent hepatocyte apoptosis. UGDH is progressively reduced in proportion to NASH severity. UGDH absence from hepatocytes hastens the development of liver damage in male mice with NASH, which is suppressed by RIPK1 kinase-dead knockin mutation.

Establishment of gastrointestinal assembloids to study the interplay between epithelial crypts and their mesenchymal niche

The cellular organization of gastrointestinal crypts is orchestrated by different cells of the stromal niche but available in vitro models fail to fully recapitulate the interplay between epithelium and stroma. Here, we establish a colon assembloid system comprising the epithelium and diverse stromal cell subtypes. These assembloids recapitulate the development of mature crypts resembling in vivo cellular diversity and organization, including maintenance of a stem/progenitor cell compartment in the base and their maturation into secretory/absorptive cell types.

Age-dependent immune and lymphatic responses after spinal cord injury

Spinal cord injury (SCI) causes lifelong debilitating conditions. Previous works demonstrated the essential role of the immune system in recovery after SCI. Here, we explored the temporal changes of the response after SCI in young and aged mice in order to characterize multiple immune populations within the mammalian spinal cord. We revealed substantial infiltration of myeloid cells to the spinal cord in young animals, accompanied by changes in the activation state of microglia. In contrast, both processes were blunted in aged mice.

Cholecystokinin neurons in mouse suprachiasmatic nucleus regulate the robustness of circadian clock

The suprachiasmatic nucleus (SCN) can generate robust circadian behaviors in mammals under different environments, but the underlying neural mechanisms remained unclear. Here, we showed that the activities of cholecystokinin (CCK) neurons in the mouse SCN preceded the onset of behavioral activities under different photoperiods. CCK-neuron-deficient mice displayed shortened free-running periods, failed to compress their activities under a long photoperiod, and developed rapid splitting or became arrhythmic under constant light.

Prox2 and Runx3 vagal sensory neurons regulate esophageal motility

Vagal sensory neurons monitor mechanical and chemical stimuli in the gastrointestinal tract. Major efforts are underway to assign physiological functions to the many distinct subtypes of vagal sensory neurons. Here, we use genetically guided anatomical tracing, optogenetics, and electrophysiology to identify and characterize vagal sensory neuron subtypes expressing Prox2 and Runx3 in mice. We show that three of these neuronal subtypes innervate the esophagus and stomach in regionalized patterns, where they form intraganglionic laminar endings.

Pressure overload induces ISG15 to facilitate adverse ventricular remodeling and promote heart failure

Inflammation promotes adverse ventricular remodeling, a common antecedent of heart failure. Here, we set out to determine how inflammatory cells affect cardiomyocytes in the remodeling heart. Pathogenic cardiac macrophages induced an IFN response in cardiomyocytes, characterized by upregulation of the ubiquitin-like protein IFN-stimulated gene 15 (ISG15), which posttranslationally modifies its targets through a process termed ISGylation.

SELENOP modifies sporadic colorectal carcinogenesis and WNT signaling activity through LRP5/6 interactions

Although selenium deficiency correlates with colorectal cancer (CRC) risk, the roles of the selenium-rich antioxidant selenoprotein P (SELENOP) in CRC remain unclear. In this study, we defined SELENOP's contributions to sporadic colorectal carcinogenesis. In human scRNA-seq datasets, we discovered that SELENOP expression rises as normal colon stem cells transform into adenomas that progress into carcinomas.

Viral vector-mediated expression of NaV1.1, after seizure onset, reduces epilepsy in mice with Dravet syndrome

Dravet syndrome (DS), an intractable childhood epileptic encephalopathy with a high fatality rate, is typically caused by loss-of-function mutations in one allele of SCN1A, which encodes NaV1.1, a 250-kDa voltage-gated sodium channel. In contrast to other epilepsies, pharmaceutical treatment for DS is limited. Here, we demonstrate that viral vector-mediated delivery of a codon-modified SCN1A open reading frame into the brain improves DS comorbidities in juvenile and adolescent DS mice (Scn1aA1783V/WT).

Induction of a torpor-like hypothermic and hypometabolic state in rodents by ultrasound

Torpor is an energy-conserving state in which animals dramatically decrease their metabolic rate and body temperature to survive harsh environmental conditions. Here, we report the noninvasive, precise and safe induction of a torpor-like hypothermic and hypometabolic state in rodents by remote transcranial ultrasound stimulation at the hypothalamus preoptic area (POA). We achieve a long-lasting (>24 h) torpor-like state in mice via closed-loop feedback control of ultrasound stimulation with automated detection of body temperature.

Significant association of cutavirus with parapsoriasis en plaques: high prevalence both in skin swab and biopsy samples

Cutavirus (CuV) is associated with cutaneous T-cell lymphoma (CTCL), of which parapsoriasis is a precursor. Our study reveals a significantly higher CuV-DNA prevalence in skin-swabs of parapsoriasis patients (6/13, 46.2%), compared to those of healthy adults (1/51, 1.96%). Eight patients (8/12, 66.7%) had CuV-DNA in biopsied skin, and four developed CTCL.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com