Publication

Single-Molecule Fluorescence In Situ Hybridization for Spatial Detection of mRNAs in Sections of Mammalian Testes

Single-molecule fluorescence in situ hybridization (smFISH) enables the detection and localization of individual mRNAs in tissue sections with single-molecule resolution while preserving spatial context, and thus, is a useful tool for examining gene expression in biological systems. In particular, the growing reliance on single-cell RNA sequencing (scRNA-seq) to explore cellular heterogeneity has reinvigorated this approach as a validation tool to spatially re-map mRNA expression patterns described in isolated cells to their parent tissue.

A Treg-specific long noncoding RNA maintains immune-metabolic homeostasis in aging liver

Regulatory T (Treg) cells modulate several aging-related liver diseases. However, the molecular mechanisms regulating Treg function in this context are unknown. Here we identified a long noncoding RNA, Altre (aging liver Treg-expressed non-protein-coding RNA), which was specifically expressed in the nucleus of Treg cells and increased with aging. Treg-specific deletion of Altre did not affect Treg homeostasis and function in young mice but caused Treg metabolic dysfunction, inflammatory liver microenvironment, liver fibrosis and liver cancer in aged mice.

Targeting lymphoid-derived IL-17 signaling to delay skin aging

Skin aging is characterized by structural and functional changes that contribute to age-associated frailty. This probably depends on synergy between alterations in the local niche and stem cell-intrinsic changes, underscored by proinflammatory microenvironments that drive pleotropic changes. The nature of these age-associated inflammatory cues, or how they affect tissue aging, is unknown. Based on single-cell RNA sequencing of the dermal compartment of mouse skin, we show a skew towards an IL-17-expressing phenotype of T helper cells, γδ T cells and innate lymphoid cells in aged skin.

Protocol for the use of signal amplification by exchange reaction-fluorescence in situ hybridization on adult formalin-fixed paraffin-embedded mouse lung tissue

Fluorescence in situ hybridization (FISH) is a useful tool for analyzing RNA expression, but difficulties arise with low-abundance RNA and in tissues that are formalin-fixed paraffin-embedded (FFPE) because reagents can be expensive. In this protocol, we adapt a previously designed FISH amplification protocol (SABER [signal amplification by exchange reaction]) for adult mouse FFPE lung sections by using probes that are extended and branched to amplify the signal. We combine FISH and immunostaining to identify cell-specific RNA.

[Not Available]

Despite the large number of articles published on skin lesions related to COVID-19, clinicopathological correlation has not been performed consistently and immunohistochemistry to demonstrate spike 3 protein expression has not been validated through RT-PCR. We compiled 69 cases of patients with confirmed COVID-19, where skin lesions were clinically and histopathologically studied.

Liprin-α1 Expression in Tumor-Infiltrating Lymphocytes Associates with Improved Survival in Patients with HPV-Positive Oropharyngeal Squamous Cell Carcinoma

Liprin-α1 is a scaffold protein involved in cell adhesion, motility, and invasion in malignancies. Liprin-α1 inhibits the expression of metastatic suppressor CD82 in cancers such as oral carcinoma, and the expression of these proteins has been known to correlate negatively. The role of these proteins has not been previously studied in human papillomavirus (HPV)-related head and neck cancers.

The human Papillomavirus twilight zone - Latency, immune control and subclinical infection

The incorporation of HPV DNA testing into cervical screening programs has shown that many HPV-positive women are cytologically normal, with HPV-positivity fluctuating throughout life. Such results suggest that papillomaviruses may persist in a latent state after disease clearance, with sporadic recurrence. It appears that virus latency represents a narrow slot in a wider spectrum of subclinical and possibly productive infections.

Optimizing Precision Medicine for Breast Cancer Brain Metastases with Functional Drug Response Assessment

The development of novel therapies for brain metastases is an unmet need. Brain metastases may have unique molecular features that could be explored as therapeutic targets. A better understanding of the drug sensitivity of live cells coupled to molecular analyses will lead to a rational prioritization of therapeutic candidates. We evaluated the molecular profiles of 12 breast cancer brain metastases (BCBM) and matched primary breast tumors to identify potential therapeutic targets.

Multiomics Technologies Capture More Particulars, Reveal More Grandeur

A patient's genome, Van Eyk noted, contains information about that patient's disease predispositions and drug responses. She added, however, that better information about disease risks and drug responses could be gleaned from the proteome. Although there are only so many protein-encoding genes, the intricacies of protein expression generate various kinds of proteomic information in abundance.

Comparative pathology of VIC01 isolate and Omicron variant of SARS-CoV-2 infection, including a rechallenge model, in the Golden Syrian hamster

Introduction: The emergence of variants such as Omicron has raised questions regarding their comparative pathogenicity, infectivity and ability to circumvent naturally acquired and vaccine-induced immunity. The Golden Syrian hamster (Mesocricetus auratus) has become the established model for studying SARS-CoV-2 infection, with endpoints providing discriminatory power for countermeasure efficacy. The Omicron variant was compared with ancestral SARS-CoV-2 (VIC01) to evaluate comparative disease severity and to investigate protection against rechallenge.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com