Publication

Stress granules affect the sensitivity of renal cancer cells to sorafenib by sequestering and stabilizing COX‑2 mRNA

Most patients with renal cancer will develop resistance to sorafenib therapy and will therefore exhibit disease progression. Effective therapies for these patients are extremely limited. Cyclooxygenase-2 (COX-2) promotes the malignant transformation of cancer cells and drug resistance. The potential of COX-2 inhibitor (celecoxib) administration in combination with sorafenib for the treatment of renal cancer is unclear.

Hepatic proinflammatory myeloid phenotypes are a hallmark of Ebola virus Kikwit pathogenesis in rhesus monkeys

The liver is an early systemic target of Ebola virus (EBOV), but characterization beyond routine histopathology and viral antigen distribution is limited. We hypothesized Ebola virus disease (EVD) systemic proinflammatory responses would be reflected in temporally altered liver myeloid phenotypes. We utilized multiplex fluorescent immunohistochemistry (mfIHC), multispectral whole slide imaging, and image analysis to quantify molecular phenotypes of myeloid cells in the liver of rhesus macaques (Macaca mulatta; n = 21) infected with EBOV Kikwit.

Escherichia coli-associated follicular cystitis in dogs: Clinical and pathologic characterization

Follicular cystitis is an uncommon inflammatory change in the urinary bladder wall characterized by the formation of tertiary lymphoid structures (TLSs) in the submucosa.To characterize clinical and pathologic features of follicular cystitis in dogs and to explore in situ distribution and possible role of Escherichia coli as an associated cause.Eight dogs diagnosed with follicular cystitis and 2 control dogs.Retrospective descriptive study.

Infectious agents and their physiological correlates in early marine Chinook salmon (Oncorhynchus tshawytscha)

  The early marine life of Pacific salmon is believed to be a critical period limiting population-level survival. Recent evidence suggests that some infectious agents are associated with survival but linkages with underlying physiological mechanisms are lacking. While challenge studies can demonstrate cause and effect relationships between infection and pathological change or mortality, in some cases pathological change may only manifest in the presence of environmental stressors; thus, it is important to gain context from field observations.

Hypoxia induces polycystin-1 expression in the renal epithelium

Mutations in polycystin-1 which is encoded by the PKD1 gene are the main causes for the development of autosomal dominant polycystic kidney disease. However, only little is known about the physiological function of polycystin-1 and even less about the regulation of its expression. Here, we show that expression of PKD1 is induced by hypoxia and compounds that stabilize the hypoxia-inducible transcription factor (HIF) 1α in primary human tubular epithelial cells. Knockdown of HIF subunits confirms HIF-1α-dependent regulation of polycystin-1 expression.

Diurnal regulation of metabolism by Gs-alpha in hypothalamic QPLOT neurons

Neurons in the hypothalamic preoptic area (POA) regulate multiple homeostatic processes, including thermoregulation and sleep, by sensing afferent input and modulating sympathetic nervous system output. The POA has an autonomous circadian clock and may also receive circadian signals indirectly from the suprachiasmatic nucleus. We have previously defined a subset of neurons in the POA termed QPLOT neurons that are identified by the expression of molecular markers (Qrfp, Ptger3, LepR, Opn5, Tacr3) that suggest receptivity to multiple stimuli.

The Omicron Sub-Variant BA.4 Displays a Remarkable Lack of Clinical Signs in a Golden Syrian Hamster Model of SARS-CoV-2 Infection

The ongoing emergence of SARS-CoV-2 virus variants remains a source of concern because it is accompanied by the potential for increased virulence as well as evasion of immunity. Here we show that, although having an almost identical spike gene sequence as another Omicron variant (BA.5.2.1), a BA.4 isolate lacked all the typical disease characteristics of other isolates seen in the Golden Syrian hamster model despite replicating almost as effectively.

Fluorescence Microscopy in Adeno-Associated Virus Research

Research on adeno-associated virus (AAV) and its recombinant vectors as well as on fluorescence microscopy imaging is rapidly progressing driven by clinical applications and new technologies, respectively. The topics converge, since high and super-resolution microscopes facilitate the study of spatial and temporal aspects of cellular virus biology. Labeling methods also evolve and diversify. We review these interdisciplinary developments and provide information on the technologies used and the biological knowledge gained.

Diagnostic investigation of Mycoplasma hyorhinis as a potential pathogen associated with neurological clinical signs and central nervous system lesions in pigs

Mycoplasma hyorhinis (M. hyorhinis) is a commensal of the upper respiratory tract in swine with the typical clinical presentations of arthritis and polyserositis in postweaning pigs. However, it has also been associated with conjunctivitis and otitis media, and recently has been isolated from meningeal swabs and/or cerebrospinal fluid of piglets with neurological signs. The objective of this study is to evaluate the role of M. hyorhinis as a potential pathogen associated with neurological clinical signs and central nervous system lesions in pigs. The presence of M.

Nesfatin-1 regulates steroidogenesis in mouse Leydig cells

Nesfatin-1 is a polypeptide hormone known to regulate appetite and energy metabolism and is derived from the precursor protein nucleobindin 2 (NUCB2). Recent studies have shown that nesfatin-1 is expressed in many peripheral tissues in mice, including the reproductive organs. However, its function and regulation in the testis remain unknown. In this study, we investigated the expression of Nucb2 mRNA and nesfatin-1 protein in mouse Leydig cells and the Leydig cell line, TM3 cells.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com