Publication

Structure and Function of Neuronal Circuits Linking Ventrolateral Preoptic Nucleus and Lateral Hypothalamic Area

To understand how sleep-wakefulness cycles are regulated, it is essential to disentangle structural and functional relationships between the preoptic area (POA) and lateral hypothalamic area (LHA), since these regions play important yet opposing roles in the sleep-wakefulness regulation. GABA- and galanin (GAL)-producing neurons in the ventrolateral preoptic nucleus (VLPO) of the POA (VLPOGABA and VLPOGAL neurons) are responsible for the maintenance of sleep, while the LHA contains orexin-producing neurons (orexin neurons) that are crucial for maintenance of wakefulness.

c-Myc promotes polyploidy in murine trophoblast cells and suppresses senescence

The placenta is essential for reproductive success. The murine placenta includes polyploid giant cells that are crucial for its function. Polyploidy occurs broadly in nature but the regulators and significance in the placenta are unknown. We discovered that many murine placental cell types are polyploid. We identified factors that license polyploidy using single-cell RNA seq. c-Myc is a key regulator of polyploidy and placental development and is required for multiple rounds of DNA replication, likely via endocycles, in trophoblast giant cells.

CHIP inhibits odontoblast differentiation through promoting DLX3 polyubiquitylation and degradation

Dentin is the major hard tissue of teeth formed by differentiated odontoblasts. How odontoblast differentiation is regulated remains enigmatic. Here, we report that the E3 ubiquitin ligase CHIP is highly expressed in undifferentiated dental mesenchymal cells and downregulated after differentiation of odontoblasts. Ectopic expression of CHIP inhibits odontoblastic differentiation of mouse dental papilla cells, whereas knockdown of endogenous CHIP has opposite effects.

Single-cell transcriptome analysis of xenotransplanted human retinal organoids defines two migratory cell populations of nonretinal origin

Human retinal organoid transplantation could potentially be a treatment for degenerative retinal diseases. How the recipient retina regulates the survival, maturation, and proliferation of transplanted organoid cells is unknown. We transplanted human retinal organoid-derived cells into photoreceptor-deficient mice and conducted histology and single-cell RNA sequencing alongside time-matched cultured retinal organoids. Unexpectedly, we observed human cells that migrated into all recipient retinal layers and traveled long distances.

The recombinant Link module of human TSG-6 suppresses cartilage damage in models of osteoarthritis: a potential disease-modifying OA drug

To investigate the role of endogenous TSG-6 in human osteoarthritis (OA) and assess the disease-modifying potential of a TSG-6-based biological treatment in cell, explant and animal models of OA.Knee articular cartilages from OA patients were analyzed for TSG-6 protein and mRNA expression using immunohistochemistry and RNAscope, respectively. The inhibitory activities of TSG-6 and its isolated Link module (Link_TSG6) on cytokine-induced degradation of OA cartilage explants were compared.

Brain matters: unveiling the distinct contributions of region, age, and sex to glia diversity and CNS function

The myelinated white matter tracts of the central nervous system (CNS) are essential for fast transmission of electrical impulses and are often differentially affected in human neurodegenerative diseases across CNS region, age and sex. We hypothesize that this selective vulnerability is underpinned by physiological variation in white matter glia.

Loss of Astrocytic µ Opioid Receptors Exacerbates Aversion Associated with Morphine Withdrawal in Mice: Role of Mitochondrial Respiration

Astrocytes express mu/µ opioid receptors, but the function of these receptors remains poorly understood. We evaluated the effects of astrocyte-restricted knockout of µ opioid receptors on reward- and aversion-associated behaviors in mice chronically exposed to morphine. Specifically, one of the floxed alleles of the Oprm1 gene encoding µ opioid receptor 1 was selectively deleted from brain astrocytes in Oprm1 inducible conditional knockout (icKO) mice.

TCF7L1 Controls the Differentiation of Tuft Cells in Mouse Small Intestine

Continuous and rapid renewal of the intestinal epithelium depends on intestinal stem cells (ISCs). A large repertoire of transcription factors mediates the correct maintenance and differentiation of ISCs along either absorptive or secretory lineages. In the present study, we addressed the role of TCF7L1, a negative regulator of WNT signalling, in embryonic and adult intestinal epithelium using conditional mouse mutants. We found that TCF7L1 prevents precocious differentiation of the embryonic intestinal epithelial progenitors towards enterocytes and ISCs.

Establishing a Mouse Model for Sexual Transmission and Male Reproductive Tract Persistence of Ebola virus

Ebola virus disease (EVD) has resulted in the death of over 15,000 people since its discovery in 1976. At least one incident of reemergence of EVD has been associated with persistent male reproductive tract infection in a patient surviving EVD greater than 500 days prior. To date, animal models of Ebola virus (EBOV) infection have failed to fully characterize the pathogenesis of reproductive tract infection. Furthermore, no animal model of sexual transmission of EBOV exists.

Activation of α 6 -containing GABA A receptors induces antinociception under physiological and pathological conditions

The loss of GABAergic inhibition is a mechanism that underlies neuropathic pain. Therefore, rescuing the GABAergic inhibitory tone through the activation of GABA A receptors is a strategy to reduce neuropathic pain. This study was designed to elucidate the function of the spinal α 6 -containing GABA A receptor in physiological conditions and neuropathic pain in female and male rats. Results show that α 6 -containing GABA A receptor blockade or transient α 6 -containing GABA A receptor knockdown induces evoked hypersensitivity and spontaneous pain in naive female rats.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com