Development

Mitotic WNT signalling orchestrates neurogenesis in the developing neocortex

The role of WNT/β-catenin signalling in mouse neocortex development remains ambiguous. Most studies demonstrate that WNT/β-catenin regulates progenitor self-renewal but others suggest it can also promote differentiation. Here we explore the role of WNT/STOP signalling, which stabilizes proteins during G2/M by inhibiting glycogen synthase kinase (GSK3)-mediated protein degradation. We show that mice mutant for cyclin Y and cyclin Y-like 1 (Ccny/l1), key regulators of WNT/STOP signalling, display reduced neurogenesis in the developing neocortex.

Transcriptional progression during meiotic prophase I reveals sex-specific features and X chromosome dynamics in human fetal female germline

During gametogenesis in mammals, meiosis ensures the production of haploid gametes. The timing and length of meiosis to produce female and male gametes differ considerably. In contrast to males, meiotic prophase I in females initiates during development. Hence, the knowledge regarding progression through meiotic prophase I is mainly focused on human male spermatogenesis and female oocyte maturation during adulthood. Therefore, it remains unclear how the different stages of meiotic prophase I between human oogenesis and spermatogenesis compare.

Nutritional stimulation by in-ovo feeding modulates cellular proliferation and differentiation in the small intestinal epithelium of chicks

Nutritional stimulation of the developing small intestine of chick embryos can be conducted by in-ovo feeding (IOF). We hypothesized that IOF of glutamine and leucine can enhance small intestine development by promoting proliferation and differentiation of multipotent small intestine epithelial cells. Broiler embryos (n = 128) were subject to IOF of glutamine (IOF-Gln), leucine (IOF-Leu), NaCl (IOF-NaCl) or no injection (control) at embryonic d 17 (E 17).

Inhibition of the cGAS-STING pathway ameliorates the premature senescence hallmarks of Ataxia-Telangiectasia brain organoids

Ataxia-telangiectasia (A-T) is a genetic disorder caused by the lack of functional ATM kinase. A-T is characterized by chronic inflammation, neurodegeneration and premature ageing features that are associated with increased genome instability, nuclear shape alterations, micronuclei accumulation, neuronal defects and premature entry into cellular senescence. The causal relationship between the detrimental inflammatory signature and the neurological deficiencies of A-T remains elusive. Here, we utilize human pluripotent stem cell-derived cortical brain organoids to study A-T neuropathology.

A supernumerary "B-sex" chromosome drives male sex determination in the Pachón cavefish, Astyanax mexicanus

Sex chromosomes are generally derived from a pair of classical type-A chromosomes, and relatively few alternative models have been proposed up to now.1,2 B chromosomes (Bs) are supernumerary and dispensable chromosomes with non-Mendelian inheritance found in many plant and animal species3,4 that have often been considered as selfish genetic elements that behave as genome parasites.5,6 The observation that in some species Bs can be either restricted or predominant in one sex7-14 raised the interesting hypothesis that Bs could play a role in sex determination.15 The characterization of putati

Microglia-neuron interaction at nodes of Ranvier depends on neuronal activity through potassium release and contributes to remyelination

Microglia, the resident immune cells of the central nervous system, are key players in healthy brain homeostasis and plasticity. In neurological diseases, such as Multiple Sclerosis, activated microglia either promote tissue damage or favor neuroprotection and myelin regeneration. The mechanisms for microglia-neuron communication remain largely unkown. Here, we identify nodes of Ranvier as a direct site of interaction between microglia and axons, in both mouse and human tissues.

Perinatal angiogenesis from pre-existing coronary vessels via DLL4-NOTCH1 signalling

New coronary vessels are added to the heart around birth to support postnatal cardiac growth. Here we show that, in late fetal development, the embryonic coronary plexus at the inner myocardium of the ventricles expresses the angiogenic signalling factors VEGFR3 and DLL4 and generates new coronary vessels in neonates. Contrary to a previous model in which the formation of new coronary vessels in neonates from ventricular endocardial cells was proposed, we find that late fetal and neonatal ventricular endocardial cells lack angiogenic potential and do not contribute to new coronary vessels.

Metabolic nuclear receptors coordinate energy metabolism to regulate Sox9+ hepatocyte fate

Recent research has indicated the adult liver Sox9+ cells located in the portal triads contribute to the physiological maintenance of liver mass and injury repair. However, the physiology and pathology regulation mechanisms of adult liver Sox9+ cells remain unknown. Here, PPARα and FXR bound to the shared site in Sox9 promoter with opposite transcriptional outputs.

YAP regulates alveolar epithelial cell differentiation and AGER via NFIB/KLF5/NKX2-1

Ventilation is dependent upon pulmonary alveoli lined by two major epithelial cell types, alveolar type-1 (AT1) and 2 (AT2) cells. AT1 cells mediate gas exchange while AT2 cells synthesize and secrete pulmonary surfactants and serve as progenitor cells which repair the alveoli. We developed transgenic mice in which YAP was activated or deleted to determine its roles in alveolar epithelial cell differentiation.

SUCNR1 is Expressed in Human Placenta and Mediates Angiogenesis: Significance in Gestational Diabetes

Placental hypervascularization has been reported in pregnancy-related pathologies such as gestational diabetes mellitus (GDM). Nevertheless, the underlying causes behind this abnormality are not well understood. In this study, we addressed the expression of SUCNR1 (cognate succinate receptor) in human placental endothelial cells and hypothesized that succinate-SUCNR1 axis might play a role in the placental hypervascularization reported in GDM. We measured significantly higher succinate levels in placental tissue lysates from women with GDM relative to matched controls.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com