Development

Kisspeptin, Neurokinin B, and Dynorphin Expression during Pubertal Development in Female Sheep

The neural mechanisms underlying increases in gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) secretion that drive puberty onset are unknown. Neurons coexpressing kisspeptin, neurokinin B (NKB), and dynorphin, i.e., KNDy neurons, are important as kisspeptin and NKB are stimulatory, and dynorphin inhibitory, to GnRH secretion. Given this, we hypothesized that kisspeptin and NKB expression would increase, but that dynorphin expression would decrease, with puberty.

Transcriptional profiling of equine endometrium before, during and after capsule disintegration during normal pregnancy and after oxytocin-induced luteostasis in non-pregnant mares

The current study used RNA sequencing to determine transcriptional profiles of equine endometrium collected 14, 22, and 28 days after ovulation from pregnant mares. In addition, the transcriptomes of endometrial samples obtained 20 days after ovulation from pregnant mares, and from non-pregnant mares which displayed and failed to display extended luteal function following the administration of oxytocin, were determined and compared in order to delineate genes whose expressions depend on the presence of the conceptus as opposed to elevated progesterone alone.

Staufen 1 is expressed by neural precursor cells in the developing murine cortex but is dispensable for NPC self-renewal and neuronal differentiation in vitro

Proper development of the cerebral cortex relies on asymmetric divisions of neural precursor cells (NPCs) to produce a recurring NPC and a differentiated neuron. Asymmetric divisions are promoted by the differential localization of cell-fate determinants, such as mRNA, between daughter cells. Staufen 1 (Stau1) is an RNA-binding protein known to localize mRNA in mature hippocampal neurons. Its expression pattern and role in the developing mammalian cortex remains unknown.Both stau1 mRNA and Stau1 protein were found to be expressed in all cells of the developing murine cortex.

Estrogen-related receptor alpha (ERRα) is required for PGC-1α-dependent gene expression in the mouse brain

Deficiency in peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) expression or function is implicated in numerous neurological and psychiatric disorders. PGC-1α is required for the expression of genes involved in synchronous neurotransmitter release, axonal integrity, and metabolism, especially in parvalbumin-positive interneurons.

Prenatal androgenization causes expression changes of progesterone and androgen receptor mRNAs in the arcuate nucleus of female mice across development

Prenatal exposure to excess androgens is associated with the development of polycystic ovary syndrome (PCOS). In prenatally androgenised (PNA) mice, a model of PCOS, progesterone receptor (PR) protein expression is reduced in arcuate nucleus (ARC) GABA neurons. This suggests a mechanism for PCOS-related impaired steroid hormone feedback and implicates androgen excess in inducing transcriptional repression of the PR-encoding gene _Pgr_ in the ARC.

Transcriptional regulation of LGALS9 by HAND2 and FOXO1 in human endometrial stromal cells in women with regular cycles

Uterine natural killer cells are regulated via surface inhibitory receptors for IL15 and galectin-9 (LGALS9) secreted by endometrial stromal cells (ESCs). However, the mechanism that regulates LGALS9 mRNA levels in ESCs is unclear. The aim of this study is to clarify the transcriptional regulation of LGALS9 in ESCs. Here, LGALS9 mRNA expression levels significantly decreased in the endometrial tissue in the early- to mid-secretory phase, and recovered in the mid- to late-secretory phase, compared to that in the proliferative phase.

Novel expression of zona pellucida 3 protein in normal testis; potential functional implications

The expression of the zona pellucida glycoprotein 3 (ZP3), originally thought to be specific for oocytes, was recently extended to ovarian, prostate, colorectal and lung cancers. Earlier successful ZP3 immunization of a transgenic mouse model carrying a ZP3 positive ovarian tumor emphasized the suitability of ZP3 for cancer immunotherapy. This study was carried out to determine whether any other normal tissues besides the ovary in healthy human and mouse tissues may express ZP3, considered important to exclude off-target effects of ZP3 cancer immunotherapy.

Comparison of two different toxin-induced kidney fibrosis models in terms of inflammatory responses

Chronic kidney disease (CKD) is characterized by persistent abnormalities in kidney function, accompanied by structural changes. Interstitial fibrosis, characterized by the accumulation of extracellular matrix (ECM) proteins, is frequently detected during CKD development. Given the multiple underlying causes of CKD, numerous animal models have been developed to advance our understanding of human nephropathy. Herein, we compared two reliable toxin-induced mouse kidney fibrosis models in terms of fibrosis and inflammation.

The extracellular matrix glycoprotein ADAMTSL2 is increased in heart failure and inhibits TGFβ signalling in cardiac fibroblasts

Fibrosis accompanies most heart diseases and is associated with adverse patient outcomes. Transforming growth factor (TGF)β drives extracellular matrix remodelling and fibrosis in the failing heart. Some members of the ADAMTSL (a disintegrin-like and metalloproteinase domain with thrombospondin type 1 motifs-like) family of secreted glycoproteins bind to matrix microfibrils, and although their function in the heart remains largely unknown, they are suggested to regulate TGFβ activity.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com