Development

Loss of Selenov predisposes mice to extra fat accumulation and attenuated energy expenditure

Selenoprotein V (SELENOV) is a new and the least conserved member of the selenoprotein family. Herein we generated Selenov knockout (KO) mice to determine its in vivo function. The KO led to 16-19% increases (P < 0.05) in body weight that were largely due to 54% higher (P < 0.05) fat mass accumulation, compared with the wild-type (WT) controls.

Absence of MMACHC in peripheral retinal cells does not lead to an ocular phenotype in mice

Combined methylmalonic aciduria with homocystinuria (cblC type) is a rare disease caused by mutations in the MMACHC gene. MMACHC encodes an enzyme crucial for intracellular vitamin B12 metabolism, leading to the accumulation of toxic metabolites e.g. methylmalonic acid (MMA) and homocysteine (Hcy), and secondary disturbances in folate and one-carbon metabolism when not fully functional.

Spatial and cell type transcriptional landscape of human cerebellar development

The human neonatal cerebellum is one-fourth of its adult size yet contains the blueprint required to integrate environmental cues with developing motor, cognitive and emotional skills into adulthood. Although mature cerebellar neuroanatomy is well studied, understanding of its developmental origins is limited. In this study, we systematically mapped the molecular, cellular and spatial composition of human fetal cerebellum by combining laser capture microscopy and SPLiT-seq single-nucleus transcriptomics.

New Stable Cell Lines Derived from the Proximal and Distal Intestine of Rainbow Trout (Oncorhynchus mykiss) Retain Several Properties Observed In Vivo

We derived two novel cell lines from rainbow trout (RT) proximal (RTpi-MI) and distal intestine (RTdi-MI) and compared them with the previously established continuous cell line RTgutGC. Intestinal stem cells, differentiating and differentiated epithelial cells, and connective cells were found in all cell lines. The cell lines formed a polarized barrier, which was not permeable to large molecules and absorbed proline and glucose.

The Rac-GAP alpha2-chimaerin signals via CRMP2 and stathmins in the development of the ocular motor system

A precise sequence of axon guidance events is required for the development of the ocular motor system. Three cranial nerves grow towards, and connect with, six extraocular muscles in a stereotyped pattern, in order to control eye movements. The signalling protein alpha2-chimaerin (α2-CHN) plays a pivotal role in the formation of the ocular motor system; mutations in CHN1, encoding α2-CHN, cause the human eye movement disorder Duane Retraction Syndrome (DRS).

Protein arginine methyltransferase 1 regulates cell proliferation and differentiation in adult mouse adult intestine

Adult stem cells play an essential role in adult organ physiology and tissue repair and regeneration. While much has been learnt about the property and function of various adult stem cells, the mechanisms of their development remain poorly understood in mammals. Earlier studies suggest that the formation of adult mouse intestinal stem cells takes place during the first few weeks after birth, the postembryonic period when plasma thyroid hormone (T3) levels are high.

Developmental and sexual dimorphic atlas of the prenatal mouse external genitalia at the single-cell level

Birth defects of the external genitalia are among the most common in the world. Proper formation of the external genitalia requires a highly orchestrated process that involves special cell populations and sexually dimorphic hormone signaling. It is clear what the end result of the sexually dimorphic development is (a penis in the male versus clitoris in the female); however, the cell populations involved in the process remain poorly defined.

Unveiling Complexity and Multipotentiality of Early Heart Fields

Rationale: Extraembryonic tissues, including the yolk sac and placenta, and the heart within the embryo, work to provide crucial nutrients to the embryo. The association of congenital heart defects (CHDs) with extraembryonic tissue defects further supports the potential developmental relationship between the heart and extraembryonic tissues. Although the development of early cardiac lineages has been well-studied, the developmental relationship between cardiac lineages, including epicardium, and extraembryonic mesoderm remains to be defined.

A neuroanatomical mechanism linking perinatal TCDD exposure to lower urinary tract dysfunction in adulthood

Benign Prostatic Hyperplasia / Lower Urinary Tract Dysfunction (BPH/LUTD) is a classic disease of aging which affects nearly all men. Symptoms typically present in the fifth or sixth decade and progressively worsen over the remainder of life. Here, we identify a surprising origin of this disease that traces back to the intrauterine environment of the developing male, challenging existing paradigms about when this disease process begins.

Fractalkine signaling regulates oligodendroglial cell genesis from SVZ precursor cells

Neural and oligodendrocyte precursor cells (NPCs and OPCs) in the subventricular zone (SVZ) of the brain contribute to oligodendrogenesis throughout life, in part due to direct regulation by chemokines. The role of the chemokine fractalkine is well established in microglia; however, the effect of fractalkine on SVZ precursor cells is unknown. We show that murine SVZ NPCs and OPCs express the fractalkine receptor (CX3CR1) and bind fractalkine. Exogenous fractalkine directly enhances OPC and oligodendrocyte genesis from SVZ NPCs in vitro.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com