Development

Adaptation of the Oxygen Sensing System during Lung Development

During gestation, the most drastic change in oxygen supply occurs with the onset of ventilation after birth. As the too early exposure of premature infants to high arterial oxygen pressure leads to characteristic diseases, we studied the adaptation of the oxygen sensing system and its targets, the hypoxia-inducible factor- (HIF-) regulated genes (HRGs) in the developing lung. We draw a detailed picture of the oxygen sensing system by integrating information from qPCR, immunoblotting, in situ hybridization, and single-cell RNA sequencing data in ex vivo and in vivo models.

Wnt signaling is boosted during intestinal regeneration by a CD44-positive feedback loop

Enhancement of Wnt signaling is fundamental for stem cell function during intestinal regeneration. Molecular modules control Wnt activity by regulating signal transduction. CD44 is such a positive regulator and a Wnt target gene. While highly expressed in intestinal crypts and used as a stem cell marker, its role during intestinal homeostasis and regeneration remains unknown. Here we propose a CD44 positive-feedback loop that boosts Wnt signal transduction, thus impacting intestinal regeneration.

A proximal-to-distal survey of healthy adult human small intestine and colon epithelium by single-cell transcriptomics

Single-cell transcriptomics offer unprecedented resolution of tissue function at the cellular level, yet studies analyzing healthy adult human small intestine and colon are sparse. Here, we present single-cell transcriptomics covering the duodenum, jejunum, ileum, and ascending, transverse, and descending colon from 3 humans.12,590 single epithelial cells from three independently processed organ donors were evaluated for organ-specific lineage biomarkers, differentially regulated genes, receptors, and drug targets.

Liver endothelial Heg regulates vascular/biliary network patterning and metabolic zonation via Wnt signaling

The liver has complex interconnecting blood vessel and biliary networks, however how the vascular and biliary network form and regulate each other and liver function are not well understood. We aimed to examine the role of Heg in mammalian liver development and functional maintenance.Global (Heg-/-) or liver endothelial cell-specific deletion of Heg (Lyve1-Cre;Hegfl/fl ) mice were used to study the in vivo function of Heg in the liver. Carbon-ink anterograde and retrograde injection were used to visualize the 3-D patterning of liver portal and biliary networks, respectively.

Glucagon-like peptide-2 stimulates S-phase entry of intestinal Lgr5+ stem cells

Leucine-rich repeat-containing G-protein coupled receptor-5 (Lgr5)+/olfactomedin-4 (Olfm4)+ intestinal stem cells (ISCs) in the crypt-base are crucial for homeostatic maintenance of the epithelium. The gut hormone, glucagon-like peptide-21-33 (GLP-2), stimulates intestinal proliferation and growth; however, the actions of GLP-2 on the Lgr5+ ISCs remain unclear. The aim of this study was to determine whether and how GLP-2 regulates Lgr5+ ISC cell cycle dynamics and number.Lgr5-eGFP-IRES-creERT2 mice were acutely administered human Gly2-GLP-2, or the GLP-2 receptor antagonist, GLP-23-33.

Sex differences in developmental patterns of neocortical astroglia: A mouse translatome database

Astroglial cells are key players in the development and maintenance of neurons and neuronal networks. Astroglia express steroid hormone receptors and show rapid responses to hormonal manipulations. However, despite important sex differences in the cortex and hippocampus, few studies have examined sex differences in astroglial cells in telencephalic development.

BMP gradient along the intestinal villus axis controls zonated enterocyte and goblet cell states

Intestinal epithelial cells derive from stem cells at the crypt base and travel along the crypt-villus axis to die at the villus tip. The two dominant villus epithelial cell types, absorptive enterocytes and mucous-secreting goblet cells, are mature when they exit crypts. Murine enterocytes switch functional cell states during migration along the villus. Here, we ask whether this zonation is driven by the bone morphogenetic protein (BMP) gradient, which increases toward the villus.

3'mRNA sequencing reveals pro-regenerative properties of c5ar1 during resolution of murine acetaminophen-induced liver injury

Murine acetaminophen-induced acute liver injury (ALI) serves as paradigmatic model for drug-induced hepatic injury and regeneration. As major cause of ALI, acetaminophen overdosing is a persistent therapeutic challenge with N-acetylcysteine clinically used to ameliorate parenchymal necrosis. To identify further treatment strategies that serve patients with poor N-acetylcysteine responses, hepatic 3'mRNA sequencing was performed in the initial resolution phase at 24 h/48 h after sublethal overdosing. This approach disclosed 45 genes upregulated (≥5-fold) within this time frame.

Histologically resolved small RNA maps in primary focal segmental glomerulosclerosis indicate progressive changes within glomerular and tubulointerstitial regions

Pathological heterogeneity is common in clinical tissue specimens and complicates the interpretation of molecular data obtained from the specimen. As a typical example, a kidney biopsy specimen often contains glomeruli and tubulointerstitial regions with different levels of histological injury, including some that are histologically normal. We reasoned that the molecular profiles of kidney tissue regions with specific histological injury scores could provide new insights into kidney injury progression.

Nutritional control of thyroid morphogenesis through gastrointestinal hormones

Developing animals absorb nutrients either through the placenta or from ingested food; however, the mechanisms by which embryos use external nutrients for individual organ morphogenesis remain to be elucidated. In this study, we assessed nutrient-dependent thyroid follicle morphogenesis in Xenopus laevis and investigated the role of secreted gastrointestinal (GI) hormones post-feeding. We found that feeding triggers thyroid follicle formation, and the thyroid cells showed transient inactivation of cell proliferation after feeding.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com