Development

Deletion of the homeodomain gene Six3 from kisspeptin neurons causes subfertility in female mice

The homeodomain transcription factor SIX3 is a known regulator of eye, nose, and forebrain development, and has recently been implicated in female reproduction. Germline heterozygosity of SIX3 is sufficient to cause subfertility, but the cell populations that mediate this role are unknown. The neuropeptide kisspeptin is a critical component of the reproductive axis and plays roles in sexual maturation, ovulation, and the maintenance of gonadotropin secretion.

In vivo overexpression of frataxin causes toxicity mediated by iron-sulfur cluster deficiency

Friedreich's ataxia is a rare disorder resulting from deficiency of frataxin, a mitochondrial protein implicated in the synthesis of iron-sulfur clusters. Preclinical studies in mice have shown that gene therapy is a promising approach to treat individuals with Friedreich's ataxia. However, a recent report provided evidence that AAVrh10-mediated overexpression of frataxin could lead to cardiotoxicity associated with mitochondrial dysfunction.

Platelet-derived growth factor signalling in neurovascular function and disease

Platelet-derived growth factors are critical for cerebrovascular development and homeostasis. Abnormalities in this signalling pathway are implicated in neurological diseases, especially those where neurovascular dysfunction and neuroinflammation plays a prominent role in disease pathologies, such as stroke and Alzheimer's disease; the angiogenic nature of this pathway also draws its significance in brain malignancies such as glioblastoma where tumour angiogenesis is profuse.

Loss of the N-acetylgalactosamine side chain of the GPI-anchor impairs bone formation and brain functions and accelerates the prion disease pathology

Glycosylphosphatidylinositol (GPI) is a post-translational glycolipid modification of proteins that anchors proteins in lipid rafts on the cell surface. Although some GPI-anchored proteins (GPI-APs), including the prion protein PrPC, have a glycan side chain composed of N-acetylgalactosamine (GalNAc)-galactose-sialic acid on the core structure of GPI glycolipid, in vivo functions of this GPI-GalNAc side chain are largely unresolved. Here, we investigated the physiological and pathological roles of the GPI-GalNAc side chain in vivo by knocking out its initiation enzyme, PGAP4, in mice.

Divergent Ca2+/calmodulin feedback regulation of CaV1 and CaV2 voltage-gated calcium channels evolved in the common ancestor of Placozoa and Bilateria

CaV1 and CaV2 voltage-gated calcium channels evolved from an ancestral CaV1/2 channel via gene duplication somewhere near the stem animal lineage. The divergence of these channel types led to distinguishing functional properties that are conserved among vertebrates and bilaterian invertebrates and contribute to their unique cellular roles.

The EDA deficient mouse has Zymbal's gland hypoplasia and acute otitis externa

In mice, rats, dogs and humans the growth and function of sebaceous glands and eyelid Meibomian glands depend on the ectodysplasin signalling pathway. Mutation of genes encoding the ligand EDA, its transmembrane receptor EDAR, and the intracellular signal transducer EDARADD leads to Hypohidrotic Ectodermal Dysplasia characterised by impaired development of teeth and hair as well as cutaneous glands. The rodent ear canal has a large auditory sebaceous gland, the Zymbal's gland, whose function in the health of the ear canal and tympanic membrane has not been determined.

Acetaminophen (APAP, paracetamol) interferes with the first trimester human fetal ovary development in an ex vivo model

Acetaminophen (APAP, paracetamol) is widely used by pregnant women. Although long considered safe, growing evidence indicates that APAP is an endocrine disruptor since in utero exposure may be associated with a higher risk of male genital tract abnormalities. In rodents, fetal exposure has long-term effects on the reproductive function of female offspring.

NaV1.1 haploinsufficiency impairs glutamatergic and GABAergic neuron function in the thalamus

Thalamocortical network dysfunction contributes to seizures and sleep deficits in Dravet syndrome (DS), an infantile epileptic encephalopathy, but the underlying molecular and cellular mechanisms remain elusive. DS is primarily caused by mutations in the SCN1A gene encoding the voltage-gated sodium channel NaV1.1, which is highly expressed in GABAergic reticular thalamus (nRT) neurons as well as glutamatergic thalamocortical neurons.

Loss of atm in Zebrafish as a Model of Ataxia-Telangiectasia Syndrome

Ataxia-telangiectasia mutated (ATM) is a key DNA damage signaling kinase that is mutated in humans with ataxia-telangiectasia (A-T) syndrome. This syndrome is characterized by neurodegeneration, immune abnormality, cancer predisposition, and premature aging. To better understand the function of ATM in vivo, we engineered a viable zebrafish model with a mutated atm gene. Zebrafish atm loss-of-function mutants show characteristic features of A-T-like motor disturbance, including coordination disorders, immunodeficiency, and tumorigenesis.

Impaired bone fracture healing in type 2 diabetes is caused by defective functions of skeletal progenitor cells

The mechanisms of obesity and type 2 diabetes (T2D)-associated impaired fracture healing are poorly studied. In a murine model of T2D reflecting both hyperinsulinemia induced by high fat diet (HFD) and insulinopenia induced by treatment with streptozotocin (STZ), we examined bone healing in a tibia cortical bone defect.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com