Development

Heterogeneity in endothelial cells and widespread venous arterialization during early vascular development in mammals

Arteriogenesis rather than unspecialized capillary expansion is critical for restoring effective circulation to compromised tissues in patients. Deciphering the origin and specification of arterial endothelial cells during embryonic development will shed light on the understanding of adult arteriogenesis. However, during early embryonic angiogenesis, the process of endothelial diversification and molecular events underlying arteriovenous fate settling remain largely unresolved in mammals.

Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches

The liver is the largest solid organ in the body, yet it remains incompletely characterized. Here we present a spatial proteogenomic atlas of the healthy and obese human and murine liver combining single-cell CITE-seq, single-nuclei sequencing, spatial transcriptomics, and spatial proteomics. By integrating these multi-omic datasets, we provide validated strategies to reliably discriminate and localize all hepatic cells, including a population of lipid-associated macrophages (LAMs) at the bile ducts.

Cell2location maps fine-grained cell types in spatial transcriptomics

Spatial transcriptomic technologies promise to resolve cellular wiring diagrams of tissues in health and disease, but comprehensive mapping of cell types in situ remains a challenge. Here we present сell2location, a Bayesian model that can resolve fine-grained cell types in spatial transcriptomic data and create comprehensive cellular maps of diverse tissues.

Isolation and Characterization of Human Brown Adipocytes

Brown adipose tissue (BAT) is a thermoregulatory fat with energy-consuming properties. The location and heterogeneity of this tissue makes it complicated to sample before and after interventions in humans, and an in vitro model for mechanistic and molecular studies is therefore of great value. We here describe a protocol for isolation of progenitors from the stromal vascular fraction of BAT biopsies obtained surgically from adult humans. We further present how these cells are differentiated in vitro and finally how they are characterized for thermogenic capacity.

Lizard Blastema Organoid Model Recapitulates Regenerated Tail Chondrogenesis

(1) Background: Lizard tail regeneration provides a unique model of blastema-based tissue regeneration for large-scale appendage replacement in amniotes. Green anole lizard (Anolis carolinensis) blastemas contain fibroblastic connective tissue cells (FCTCs), which respond to hedgehog signaling to create cartilage in vivo. However, an in vitro model of the blastema has not previously been achieved in culture.

An in situ hybridization study of syndecan family during the late stages of developing mouse molar tooth germ

Expression of syndecan-1, 2, 3, and 4 mRNAs during the late stages of tooth germ formation was investigated by in situ hybridization, using [35S]-UTP-labeled cRNA probes. Syndecan-1 mRNA was mainly expressed in the stellate reticulum and stratum intermedium as well as at the cervical region of dental papilla/dental follicle during E18.5-P3.0. Expression in the dental epithelium was enhanced during the postnatal periods, which was supported by real-time RT-PCR analysis.

Kidney-Specific KO of the Circadian Clock Protein PER1 Alters Renal Sodium Handling, Aldosterone Levels, and Kidney/Adrenal Gene Expression

PER1 is a circadian clock transcription factor that is regulated by aldosterone, a hormone that increases blood volume and sodium retention to increase blood pressure. Male global Per1 knockout (KO) mice develop reduced night/day differences in sodium excretion in response to a high salt diet plus desoxycorticosterone pivalate treatment (HS+DOCP), a model of salt-sensitive hypertension. Additionally, global Per1 KO mice exhibit higher aldosterone levels on a normal salt diet.

ADAMTS18 regulates early branching morphogenesis of lacrimal gland and has a significant association with the risk of dry eye in mice

ADAMTS18 is an orphan member of the ADAMTS family of metalloproteinase. ADAMTS18 mutation has been linked to developmental eye disorders, such as retinal dystrophies and ectopia lentis. Here, we report a new function of ADAMTS18 in modulating the lacrimal gland (LG) branching morphogenesis, and an association with dry eye in mice. Adamts18 mRNA was found to be enriched in the epithelium of branching tips of embryonic (E) LG, but its expression was barely detectable after 2 weeks of birth.

Dissecting cardiac myosin-binding protein C interactions on a synthetic β-cardiac myosin DNA nanotube thick filament

Cardiac myosin-binding protein C (cMyBP-C) is an important regulator of cardiac muscle contraction and is commonly implicated in hypertrophic cardiomyopathy (HCM). However, the mechanism of regulation by cMyBP-C remains unclear due to experimental challenges in dissecting the proposed weak, transient interactions with its binding partners. Here, we utilized a nanosurf assay, containing a synthetic b-cardiac myosin thick filament, to systematically probe cMyBP-C interactions with actin and myosin.

Spatially and functionally distinct pools of calmodulin mRNA in cardiac myocytes

Calmodulin (CaM) is a multifunctional calcium-binding protein that modulates activity of many different ion channels, enzymes and other proteins. In vertebrates, CaM represents a unique case, where the exact same, invariant amino acid sequence is encoded by multiple genes on different chromosomes (three in case of the mouse and human). These multiple CaM genes have been hypothesized to afford high spatiotemporal resolution in the control of numerous CaM-dependent processes within highly specialized cells, such as neurons and cardiac myocytes.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com