Cancer

Minor intron splicing is critical for survival of lethal prostate cancer

The evolutionarily conserved minor spliceosome (MiS) is required for protein expression of ∼714 minor intron-containing genes (MIGs) crucial for cell-cycle regulation, DNA repair, and MAP-kinase signaling. We explored the role of MIGs and MiS in cancer, taking prostate cancer (PCa) as an exemplar. Both androgen receptor signaling and elevated levels of U6atac, a MiS small nuclear RNA, regulate MiS activity, which is highest in advanced metastatic PCa. siU6atac-mediated MiS inhibition in PCa in vitro model systems resulted in aberrant minor intron splicing leading to cell-cycle G1 arrest.

Sublethal necroptosis signaling promotes inflammation and liver cancer

It is currently not well known how necroptosis and necroptosis responses manifest in vivo. Here, we uncovered a molecular switch facilitating reprogramming between two alternative modes of necroptosis signaling in hepatocytes, fundamentally affecting immune responses and hepatocarcinogenesis.

Tailoring vascular phenotype through AAV therapy promotes anti-tumor immunity in glioma

Glioblastomas are aggressive brain tumors that are largely immunotherapy resistant. This is associated with immunosuppression and a dysfunctional tumor vasculature, which hinder T cell infiltration. LIGHT/TNFSF14 can induce high endothelial venules (HEVs) and tertiary lymphoid structures (TLS), suggesting that its therapeutic expression could promote T cell recruitment. Here, we use a brain endothelial cell-targeted adeno-associated viral (AAV) vector to express LIGHT in the glioma vasculature (AAV-LIGHT).

Pan-cancer T cell atlas links a cellular stress response state to immunotherapy resistance

Tumor-infiltrating T cells offer a promising avenue for cancer treatment, yet their states remain to be fully characterized. Here we present a single-cell atlas of T cells from 308,048 transcriptomes across 16 cancer types, uncovering previously undescribed T cell states and heterogeneous subpopulations of follicular helper, regulatory and proliferative T cells. We identified a unique stress response state, TSTR, characterized by heat shock gene expression.

Intratumoral dendritic cell-CD4+ T helper cell niches enable CD8+ T cell differentiation following PD-1 blockade in hepatocellular carcinoma

Despite no apparent defects in T cell priming and recruitment to tumors, a large subset of T cell rich tumors fail to respond to immune checkpoint blockade (ICB). We leveraged a neoadjuvant anti-PD-1 trial in patients with hepatocellular carcinoma (HCC), as well as additional samples collected from patients treated off-label, to explore correlates of response to ICB within T cell-rich tumors.

Improving pathological early diagnosis and differential biomarker value for hepatocellular carcinoma via RNAscope technology

BACKGROUND:
The diagnostic and prognostic values of glypican3 (GPC3) and glutamine synthetase (GS) proteins in hepatocellular carcinoma (HCC) have been reported, but their specificity and sensitivity remain low. Here, we applied RNAscope to improve HCC early pathological and differential diagnosis by estimating GPC3 and GS mRNAs.

Regulation and Role of GLI1 in Cutaneous Squamous Cell Carcinoma Pathogenesis.

Cutaneous squamous cell carcinoma (cSCC) is the second most common skin tumor in humans. Although current therapies are sufficient to clear the tumor in many cases, the overall risk of cSCC metastasis is still 5%. Alternative treatment options could help to overcome this situation. Here we focused on the role of the Hedgehog (HH) signaling pathway and its interplay with epidermal growth factor receptor (EGFR) signaling in cSCC.

Epithelial to mesenchymal plasticity and differential response to therapies in pancreatic ductal adenocarcinoma

Transcriptional profiling has defined pancreatic ductal adenocarcinoma (PDAC) into distinct subtypes with the majority being classical epithelial (E) or quasi-mesenchymal (QM). Despite clear differences in clinical behavior, growing evidence indicates these subtypes exist on a continuum with features of both subtypes present and suggestive of interconverting cell states. Here, we investigated the impact of different therapies being evaluated in PDAC on the phenotypic spectrum of the E/QM state.

Angiopoietin1 Deficiency in Hepatocytes Affects the�Growth�of Colorectal Cancer Liver Metastases (CRCLM)

Colorectal cancer liver metastases (CRCLM) that receive their blood supply via vessel co-option are associated with a poor response to anti-angiogenic therapy. Angiopoietins (Ang1 and Ang2) with their Tyrosine-protein kinase receptor (Tie2) have been shown to support vessel co-option. We demonstrate significantly higher expression of Ang1 in hepatocytes adjacent to the tumor region of human chemona�ve and treated co-opting (replacement histopathological growth patterns: RHGP) tumors.

Identification of recurrent FHL2-GLI2 oncogenic fusion in sclerosing stromal tumors of the ovary

Sclerosing stromal tumor (SST) of the ovary is a rare type of sex cord-stromal tumor (SCST), whose genetic underpinning is currently unknown. Here, using whole-exome, targeted capture and RNA-sequencing, we report recurrent FHL2-GLI2 fusion genes in 65% (17/26) of SSTs and other GLI2 rearrangements in additional 15% (4/26) SSTs, none of which are detected in other types of SCSTs (n?=?48) or common cancer types (n?=?9,950). The FHL2-GLI2 fusions result in transcriptomic activation of the Sonic Hedgehog (SHH) pathway in SSTs.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com