Cancer

Identification of a ΔNp63-Dependent Basal-Like A Subtype-Specific Transcribed Enhancer Program (B-STEP) in Aggressive Pancreatic Ductal Adenocarcinoma

A major hurdle to the application of precision oncology in pancreatic cancer is the lack of molecular stratification approaches and targeted therapy for defined molecular subtypes. In this work, we sought to gain further insight and identify molecular and epigenetic signatures of the basal-like A pancreatic ductal adenocarcinoma (PDAC) subgroup that can be applied to clinical samples for patient stratification and/or therapy monitoring.

Immuno-Contexture and Immune Checkpoint Molecule Expression in Mismatch Repair Proficient Colorectal Carcinoma

Colorectal carcinoma (CRC) represents a lethal disease with heterogeneous outcomes. Only patients with mismatch repair (MMR) deficient CRC showing microsatellite instability and hyper-mutated tumors can obtain clinical benefits from current immune checkpoint blockades; on the other hand, immune- or target-based therapeutic strategies are very limited for subjects with mismatch repair proficient CRC (CRCpMMR). Here, we report a comprehensive typing of immune infiltrating cells in CRCpMMR. We also tested the expression and interferon-γ-modulation of PD-L1/CD274.

Circulating miR-26b-5p and miR-451a as diagnostic biomarkers in medullary thyroid carcinoma patients

The determination of tumour biomarkers is paramount to advancing personalized medicine, more so in rare tumours like medullary thyroid carcinoma (MTC), whose diagnosis is still challenging. The aim of this study was to identify non-invasive circulating biomarkers in MTC. To achieve this goal, paired MTC tissue and plasma extracellular vesicle samples were collected from multiple centres and microRNA (miRNA) expression levels were evaluated.The samples from a discovery cohort of 23 MTC patients were analysed using miRNA arrays.

HPV Infection in Squamous Cell Carcinoma of the Hypopharynx, Larynx, and Oropharynx With Multisite Involvement

The prevalence and prognostic significance of high-risk human papillomavirus (HR-HPV) have been well-established in oropharyngeal squamous cell carcinoma (OPSCC), but not in hypopharyngeal squamous cell carcinoma (HPSCC) or laryngeal squamous cell carcinoma (LSCC). Moreover, HR-HPV infection in squamous cell carcinoma with multisite involvement has not been examined.

EFdA efficiently suppresses HIV replication in the male genital tract and prevents penile HIV acquisition

Sexually transmitted HIV infections in heterosexual men are acquired through the penis. Low adherence to condom usage and the fact that 40% of circumcised men are not protected indicate the need for additional prevention strategies. Here, we describe a new approach to evaluate the prevention of penile HIV transmission. We demonstrated that the entire male genital tract (MGT) of bone marrow/liver/thymus (BLT) humanized mice is repopulated with human T and myeloid cells. The majority of the human T cells in the MGT express CD4 and CCR5.

Presence of EBV antigens detected by a sensitive method in pediatric and adult Diffuse Large B-cell lymphomas

In 2017, the World Health Organization (WHO) confirmed a new entity, Epstein Barr virus (EBV) + Diffuse large B cell lymphoma (DLBCL), not otherwise specified (NOS). Traces of EBV transcripts were described in lymphomas, including DLBCL, that were diagnosed as EBV negative by conventional methods. The aim of this study was to detect viral genome by qPCR, as well as LMP1 and EBNA2 transcripts, with a more sensitive method in DLBCL cases from Argentina. Fourteen cases originally considered as EBV negative expressed LMP1 and/or EBNA2 transcripts.

The lncRNA LETS1 promotes TGF-β-induced EMT and cancer cell migration by transcriptionally activating a TβR1-stabilizing mechanism

Transforming growth factor-β (TGF-β) signaling is a critical driver of epithelial-to-mesenchymal transition (EMT) and cancer progression. In SMAD-dependent TGF-β signaling, activation of the TGF-β receptor complex stimulates the phosphorylation of the intracellular receptor-associated SMADs (SMAD2 and SMAD3), which translocate to the nucleus to promote target gene expression. SMAD7 inhibits signaling through the pathway by promoting the polyubiquitination of the TGF-β type I receptor (TβRI).

Utility of GLI1 RNA chromogenic in situ hybridization in distinguishing basal cell carcinoma from histopathologic mimics

Basal cell carcinoma (BCC) is the most common human malignancy and is a leading cause of non-melanoma skin cancer-related morbidity. BCC has several histologic mimics which may have treatment and prognostic implications. Furthermore, BCC may show alternative differentiation toward a variety of cutaneous structures. The vast majority of BCCs harbor mutations in the hedgehog signaling pathway, resulting in increased expression of the GLI family of transcription factors.

Two cases of severe pulmonary toxicity from highly active mesothelin-directed CAR T cells

Multiple clinical studies have treated mesothelin (MSLN)-positive solid tumors by administering MSLN-directed chimeric antigen receptor (CAR) T cells. Although these products are generally safe, efficacy is limited. Therefore, we generated and characterized a potent, fully human anti-MSLN CAR. In a phase 1 dose-escalation study of patients with solid tumors, we observed two cases of severe pulmonary toxicity following intravenous infusion of this product in the high-dose cohort (1-3 × 108 T cells per m2).

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com