Cancer

Extensive HPV-Related Carcinoma In Situ of the Upper Aerodigestive Tract with ‘Nonkeratinizing’Histologic Features.

Over the past several decades, it has become clear that human papillomavirus (HPV) is important for the development and progression of many head and neck squamous cell carcinomas, particularly those arising in the oropharyngeal tonsillar crypts. Yet, our understanding of HPV's role in premalignant squamous lesions remains relatively poor. This is in part because premalignant lesions of the oropharyngeal tonsillar crypt tissue, where most HPV-related carcinomas arise, are difficult if not impossible to identify.

Monitoring Tumorigenesis and Senescence In Vivo with a p16 INK4a Luciferase Model.

Monitoring cancer and aging in vivo remains experimentally challenging. Here, we describe a luciferase knockin mouse (p16(LUC)), which faithfully reports expression of p16(INK4a), a tumor suppressor and aging biomarker. Lifelong assessment of luminescence in p16(+/LUC) mice revealed an exponential increase with aging, which was highly variable in a cohort of contemporaneously housed, syngeneic mice. Expression of p16(INK4a) with aging did not predict cancer development, suggesting that the accumulation of senescent cells is not a principal determinant of cancer-related death.

Lrig2-deficient mice are protected against PDGFB-induced glioma.

BACKGROUND: The leucine-rich repeats and immunoglobulin-like domains (LRIG) proteins constitute an integral membrane protein family that has three members: LRIG1, LRIG2, and LRIG3. LRIG1 negatively regulates growth factor signaling, but little is known regarding the functions of LRIG2 and LRIG3. In oligodendroglial brain tumors, high expression of LRIG2 correlates with poor patient survival. Lrig1 and Lrig3 knockout mice are viable, but there have been no reports on Lrig2-deficient mice to date.

Detection and significance of human papillomavirus, CDKN2A(p16) and CDKN1A(p21) expression in squamous cell carcinoma of the larynx.

Although a strong etiologic relationship between human papillomavirus (HPV) and a majority of oropharyngeal squamous cell carcinomas has been established, the role of HPV in non-oropharyngeal head and neck carcinomas is much less clear. Here, we investigated the prevalence and clinicopathologic significance of HPV and its reported biomarkers, CDKN2A(p16) and CDKN1A(p21), in laryngeal squamous cell carcinomas in patients treated either with primary surgery and postoperative radiation or with definitive radiation-based therapy.

RNAscope for In situ Detection of Transcriptionally Active Human Papillomavirus in Head and Neck Squamous Cell Carcinoma.

The 'gold standard' for oncogenic HPV detection is the demonstration of transcriptionally active high-risk HPV in tumor tissue. However, detection of E6/E7 mRNA by quantitative reverse transcription polymerase chain reaction (qRT-PCR) requires RNA extraction which destroys the tumor tissue context critical for morphological correlation and has been difficult to be adopted in routine clinical practice.

Utility of PAX8 mouse monoclonal antibody in the diagnosis of thyroid, thymic, pleural, and lung tumors: a comparison with polyclonal PAX8 antibody.

AIMS:

The purpose of this study was to compare the immunohistochemical staining profiles of PAX8-polyclonal, PAX8-monoclonal, PAX5-monoclonal, and PAX6-monoclonal antibodies in several histologic types of primary thoracic and thyroid tumors. In addition, we analyzed PAX8 mRNA expression by using in situ hybridization.

METHODS AND RESULTS:

The PAS positive material in gastric cancer cells of signet ring type is not mucin.

PURPOSE:The purpose of this study is to assess the exocrine and neuroendocrine properties of tumour cells in diffuse gastric cancer with signet ring cell differentiation. MATERIAL AND METHODS: Mucin mRNA and protein expressions (MUC1, 2, 3, 4, 5AC, 6 and MUC13) were assessed by immunohistochemistry and in situ hybridization. The neuroendocrine properties were evaluated by protein and mRNA expression of the general neuroendocrine markers chromogranin A and synaptophysin.

Human papillomavirus (HPV) status of non-tobacco related squamous cell carcinomas of the lateral tongue.

OBJECTIVES:

The human papillomavirus (HPV) is an important cause of some head and neck squamous cell carcinomas (HNSCCs), but its role in cancer of the lateral tongue is debatable. Suspicion of HPV causation is heightened when these lateral tongue carcinomas arise in patients that are young and/or have never smoked. The purpose of this study was to determine the incidence of transcriptionally active high risk HPV in these tumors, with a particular emphasis on non-smoking patients who are often presumed to have HPV-positive tumors.

METHODS:

Human papilloma virus testing in oropharyngeal squamous cell carcinoma: What the clinician should know.

High risk Human Papilloma virus (HR-HPV) associated oropharyngeal cancers are on the increase. Although, the scientific community is aware of the importance of Human Papilloma Virus (HPV) testing, there is no consensus on the assays that are required to reliably identify HR-HPV related tumors. A wide range of methods have been developed. The most widely used techniques include viral DNA detection, with polymerase chain reaction (PCR) or In Situ Hybridization, and p16 detected by immunohistochemistry.

Possible role of Cdx2 in the serrated pathway of colorectal cancer characterized by BRAF mutation, high-level CpG Island methylator phenotype and mismatch repair-deficiency.

Colorectal cancer is a heterogeneous disease at the histomorphological, clinical and molecular level. Approximately 20% of cases may progress through the "serrated" pathway characterized by BRAF mutation and high-level CpG Island Methylator Phenotype (CIMP). A large subgroup are additionally microsatellite instable (MSI) and demonstrate significant loss of tumor suppressor Cdx2. The aim of this study is to determine the specificity of Cdx2 protein expression and CpG promoter hypermethylation for BRAF(V600E) and high-level CIMP in colorectal cancer.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com