Cancer

RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. 

In situ analysis of biomarkers is highly desirable in molecular pathology because it allows the examination of biomarker status within the histopathological context of clinical specimens. Immunohistochemistry and DNA in situ hybridization (ISH) are widely used in clinical settings to assess protein and DNA biomarkers, respectively, but clinical use of in situ RNA analysis is rare. This disparity is especially notable when considering the abundance of RNA biomarkers discovered through whole-genome expression profiling.

B7-H1 Expression Model for Immune Evasion in Human Papillomavirus-Related Oropharyngeal Squamous Cell Carcinoma. 

Human papillomavirus (HPV) is associated with oropharyngeal squamous cell carcinomas. Persistent viral infection is postulated to lead to carcinogenesis, although infection of benign adjacent epithelium is not typically observed. It is known that immune evasive tumor cells can provide an ideal niche for a virus. The B7-H1/PD-1 cosignaling pathway plays an important role in viral immune evasion by rendering CD8+ cytotoxic T cells anergic. We hypothesized that HPV-related oropharyngeal squamous cell carcinomas express B7-H1 as a mechanism for immune evasion.

From morphologic to molecular: established and emerging molecular diagnostics for breast carcinoma. 

Diagnostics in the field of breast carcinoma are constantly evolving. The recent wave of molecular methodologies, both microscope and non-microscope based, have opened new ways to gain insight into this disease process and have moved clinical diagnostics closer to a 'personalized medicine' approach. In this review we highlight some of the advancements that laboratory medicine technology is making toward guiding the diagnosis, prognosis, and therapy selection for patients affected by breast carcinoma.

Partial p16 staining in oropharyngeal squamous cell carcinoma: extent and pattern correlate with human papillomavirus RNA status.

Human papillomavirus (HPV)-related oropharyngeal squamous cell carcinoma has unique biology and better outcomes. p16 immunostaining is used as a surrogate marker for transcriptionally active HPV. Although diffuse staining is generally accepted as positive, the significance of partial staining has not been established, nor has the cutoff for extent of p16 staining that should be used to identify a tumor as HPV-related. From three other large studies utilizing p16 immunohistochemistry, we identified all cases with partial positive staining.

Transcriptionally‐active high‐risk human papillomavirus is rare in oral cavity and laryngeal/hypopharyngeal squamous cell carcinomas–a tissue microarray study utilizing E6/E7 mRNA in situ hybridization.

AIMS:

Human papillomavirus is well established in oropharyngeal squamous cell carcinoma as both causative and prognostic, but its significance in non-oropharyngeal tumours is unclear. In particular, the significance of finding viral DNA is not known. We sought to evaluate nonoropharyngeal squamous cell carcinomas for transcriptionally-active human papillomavirus and to compare this with the presence of viral DNA.

METHODS:

Detection of transcriptionally active high-risk HPV in patients with head and neck squamous cell carcinoma as visualized by a novel E6/E7 mRNA in situ hybridization method.

Evidence for transcriptional activation of the viral oncoproteins E6 and E7 is regarded as the gold standard for the presence of clinically relevant human papillomavirus (HPV), but detection of E6/E7 mRNA requires RNA extraction and polymerase chain reaction amplification-a challenging technique that is restricted to the research laboratory. The development of RNA in situ hybridization (ISH) probes complementary to E6/E7 mRNA permits direct visualization of viral transcripts in routinely processed tissues and has opened the door for accurate HPV detection in the clinical care setting.

Restriction of intestinal stem cell expansion and the regenerative response by YAP. 

A remarkable feature of regenerative processes is their ability to halt proliferation once an organ's structure has been restored. The Wnt signalling pathway is the major driving force for homeostatic self-renewal and regeneration in the mammalian intestine. However, the mechanisms that counterbalance Wnt-driven proliferation are poorly understood.

Spindle Cell Carcinomas of the Head and Neck Rarely Harbor Transcriptionally-Active Human Papillomavirus.

Spindle cell carcinoma is an uncommon variant of squamous cell carcinoma characterized by spindled or pleomorphic cells which appear to be a true sarcoma but are actually epithelial. Some head and neck squamous cell carcinoma variants can be human papillomavirus (HPV)-related and have improved outcomes. We sought to determine if spindle cell carcinomas are associated with transcriptionally-active HPV. Cases of spindle cell carcinoma were retrieved from department files.

Evaluation of tissue PCA3 expression in prostate cancer by RNA in situ hybridization—a correlative study with urine PCA3 and TMPRSS2-ERG.

PCA3 is a prostate-specific non-coding RNA, with utility as a urine-based early detection biomarker. Here, we report the evaluation of tissue PCA3 expression by RNA in situ hybridization in a cohort of 41 mapped prostatectomy specimens. We compared tissue PCA3 expression with tissue level ERG expression and matched pre-prostatectomy urine PCA3 and TMPRSS2-ERG levels. Across 136 slides containing 138 foci of prostate cancer, PCA3 was expressed in 55% of cancer foci and 71% of high-grade prostatic intraepithelial neoplasia foci.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com