RNAscope

High-multiplex tissue imaging in routine pathology-are we there yet?

High-multiplex tissue imaging (HMTI) approaches comprise several novel immunohistological methods that enable in-depth, spatial single-cell analysis. Over recent years, studies in tumor biology, infectious diseases, and autoimmune conditions have demonstrated the information gain accessible when mapping complex tissues with HMTI.

Ranbp1 modulates morphogenesis of the craniofacial midline in mouse models of 22q11.2 deletion syndrome

Facial dysmorphology is a hallmark of 22q11.2 Deletion Syndrome (22q11DS). Nearly all affected individuals have facial features characteristic of the syndrome: a vertically-long face with broad nasal bridge, narrow palpebral fissures and mild micrognathia, sometimes accompanied by facial skeletal and oropharyngeal anomalies. Despite the frequency of craniofacial dysmorphology due to 22q11.2 deletion, there is still incomplete understanding of the contribution of individual 22q11 genes to craniofacial and oropharyngeal development.

Chronic Lymphocytic Leukemia With Two B-Cell Populations of Discordant Light Chain Restrictions in Individual Patients

To evaluate clinicopathologic characteristics of biclonal chronic lymphocytic leukemia (CLL).Retrospectively analyze clinical data and pathologic features.Ten cases were identified in which flow cytometry demonstrated an abnormal B-cell population with a CLL-like immunophenotype but showed no definitive light chain restriction. All had cytogenetic abnormalities detected, including seven with two CLL-related abnormalities. Four of these showed features suggestive of clonal evolution, all having del(13q) as a "stem-line" abnormality and three showing del(11q) as a "side-line" abnormality.

Single molecule RNA in situ detection in clinical FFPE tissue sections by vsmCISH

Although RNA plays a vital role in the process of gene expression, it is less used as an in situ biomarker for clinical diagnostics compared to DNA and protein. This is mainly due to technical challenges caused by the low expression level and easy degradation of RNA molecules themselves. To tackle this issue, methods that are sensitive and specific are needed. Here we present an RNA single molecule chromogenic in situ hybridization assay based on DNA probe proximity ligation and rolling circle amplification.

Assessing the effects of aging on the liver endothelial cell landscape using single-cell RNA sequencing

Endothelial cell (EC) function declines with age and contributes to the development of many vascular-related disease processes. Currently, the effects of aging on the molecular regulatory mechanisms of liver ECs have not been fully elucidated. Here, we employed single-cell RNA sequencing to map the transcriptome of ECs and analyzed their relationship with aging. We identified 8 different EC subtypes, interestingly, 2 of which were specially expressed in aged mice ECs namely aged capillary ECs (Aged ECs) and pro-inflammation capillary ECs (Proinfla.ECs).

A Spatial Atlas of Wnt Receptors in Adult Mouse Liver

Hepatic zonation is critical for most metabolic functions in liver. Wnt signaling plays an important role in establishing and maintaining liver zonation. Yet, the anatomic expression of Wnt signaling components, especially all 10 Frizzled (Fzd) receptors, has not been characterized in adult liver. To address this, we quantitatively mapped the spatial expression of Fzd receptors in adult mouse liver via multiplex fluorescent in situ hybridization. Although all 10 Fzd receptors are expressed within a metabolic unit, Fzd receptors 1, 4, and 6 are the highest expressed.

Cell selectivity in succinate receptor SUCNR1/GPR91 signaling in skeletal muscle

Succinate is released by skeletal muscle during exercise and activates SUCNR1/GPR91. Signaling of SUCNR1 is involved in metabolite-sensing paracrine communication in skeletal muscle during exercise. However, the specific cell types responding to succinate and the directionality of communication are unclear. We aim to characterize the expression of SUCNR1 in human skeletal muscle. De novo analysis of transcriptomic datasets demonstrated that SUCNR1 mRNA is expressed in immune, adipose, and liver tissues, but scarce in skeletal muscle.

Bafilomycin A1 inhibits SARS-CoV-2 infection in a human lung xenograft mouse model

Coronavirus disease 2019 is a global pandemic caused by SARS-CoV-2. The emergence of its variant strains has posed a considerable challenge to clinical treatment. Therefore, drugs capable of inhibiting SARS-CoV-2 infection, regardless of virus variations, are in urgently need. Our results showed that the endosomal acidification inhibitor, Bafilomycin A1 (Baf-A1), had an inhibitory effect on the viral RNA synthesis of SARS-CoV-2, and its Beta and Delta variants at the concentration of 500 nM.

Soluble Klotho protects against glomerular injury through regulation of ER stress response

αKlotho (Klotho) has well established renoprotective effects; however, the molecular pathways mediating its glomerular protection remain incompletely understood. Recent studies have reported that Klotho is expressed in podocytes and protects glomeruli through auto- and paracrine effects. Here, we examined renal expression of Klotho in detail and explored its protective effects in podocyte-specific Klotho knockout mice, and by overexpressing human Klotho in podocytes and hepatocytes.

HSV-1 LAT Promoter Deletion Viruses Exhibit Strain-Specific and LAT-Dependent Epigenetic Regulation of Latent Viral Genomes in Human Neurons

Herpes simplex virus 1 (HSV-1) establishes latency in neurons and expresses long noncoding RNAs termed the latency-associated transcripts (LATs). Two previous studies using HSV-1 recombinants containing deletions in the LAT promoter revealed opposing effects of the promoter deletion regarding the heterochromatinization of latent viral genomes in mice ganglia.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com