RNAscope

UHRF1 overexpression promotes osteosarcoma metastasis through altered exosome production and AMPK/SEMA3E suppression

Loss-of-function mutations at the retinoblastoma (RB1) gene are associated with increased mortality, metastasis, and poor therapeutic outcome in several cancers, including osteosarcoma. However, the mechanism(s) through which RB1 loss worsens clinical outcome remains understudied. Ubiquitin-like with PHD and Ring Finger domains 1 (UHRF1) has been identified as a critical downstream effector of the RB/E2F signaling pathway that is overexpressed in various cancers. Here, we determined the role and regulatory mechanisms of UHRF1 in rendering osteosarcoma cells more aggressive.

Modification of Diet to Reduce the Stemness and Tumorigenicity of Murine and Human Intestinal Cells

Black raspberries (BRBs) have colorectal cancer (CRC) chemo-preventative effects. As CRC originates from an intestinal stem cell (ISC) this study has investigated the impact of BRBs on normal and mutant ISCs.Mice with an inducible Apcfl mutation in either the ISC (Lgr5CreERT2 ) or intestinal crypt (AhCre/VillinCreERT2 ) are fed a control or 10% BRB-supplemented diet. This study uses immunohistochemistry, gene expression analysis, and organoid culture to evaluate the effect of BRBs on intestinal homeostasis.

LATS1/2 control TGFB-directed epithelial-to-mesenchymal transition in the murine dorsal cranial neuroepithelium through YAP regulation

Hippo signaling, an evolutionarily conserved kinase cascade involved in organ size control, plays key roles in various tissue developmental processes, but its role in craniofacial development remains poorly understood. Using the transgenic Wnt1-Cre2 driver, we inactivated the Hippo signaling components Lats1 and Lats2 in the cranial neuroepithelium of mouse embryos and found that the double conditional knockout (DCKO) of Lats1/2 resulted in neural tube and craniofacial defects. Lats1/2 DCKO mutant embryos had microcephaly with delayed and defective neural tube closure.

Coupled myovascular expansion directs cardiac growth and regeneration

Heart regeneration requires multiple cell types to enable cardiomyocyte (CM) proliferation. How these cells interact to create growth niches is unclear. Here, we profile proliferation kinetics of cardiac endothelial cells (CECs) and CMs in the neonatal mouse heart and find that they are spatiotemporally coupled. We show that coupled myovascular expansion during cardiac growth or regeneration is dependent upon VEGF-VEGFR2 signaling, as genetic deletion of Vegfr2 from CECs or inhibition of VEGFA abrogates both CEC and CM proliferation.

Osteoarthritis year in review 2021: biology

This year in review on osteoarthritis biology summarizes a series of research articles published between the 2020 and 2021 Osteoarthritis Research Society International (OARSI) World Congress. Research hightlights were selected and discussed based on the new discoveries of OA's cellular molecular mechanism, anatomical signatures, potential therapeutic targets, and regenerative therapy.

Osteoarthritis year in review 2022: biology

The field of osteoarthritis (OA) biology is rapidly evolving and brilliant progress has been made this year as well. Landmark studies of OA biology published in 2021 and early 2022 were selected through PubMed search by personal opinion. These papers were classified by their molecular mechanisms, and it was largely divided into the intracellular signaling mechanisms and the inter-compartment interaction in chondrocyte homeostasis and OA progression.

EGFR signaling is overactive in Pachyonychia congenita: effective treatment with oral erlotinib

Pachyonychia congenita (PC) is a rare keratinizing disorder characterized by painful palmoplantar keratoderma (PPK) for which there is no standard current treatment. PC is caused by dominant mutations in keratin 6A, 6B, 6C, 16, and 17 genes involved in stress, wound healing, and epidermal barrier formation. Mechanisms leading to pain and PPK in PC remain elusive. Here, we show overexpression of EGFR ligands epiregulin and TGF-α as well as HER1-EGFR and HER2 in the upper spinous layers of PC lesions. EGFR activation was confirmed by upregulated MAPK/ERK and mTOR signaling.

Humanized zebrafish as a tractable tool for in vivo evaluation of pro-myelinating drugs

Therapies that promote neuroprotection and axonal survival by enhancing myelin regeneration are an unmet need to prevent disability progression in multiple sclerosis. Numerous potentially beneficial compounds have originated from phenotypic screenings but failed in clinical trials. It is apparent that current cell- and animal-based disease models are poor predictors of positive treatment options, arguing for novel experimental approaches.

Keratinocyte-derived cytokine TSLP promotes growth and metastasis of melanoma by regulating the tumor-associated immune microenvironment

Malignant melanoma is a major public health issue displaying frequent resistance to targeted therapy and immunotherapy. A major challenge is to better understand how melanoma cells evade immune elimination and how tumor growth and metastasis is facilitated by tumor microenvironment. Here, we show that expression of the cytokine TSLP by epidermal keratinocytes is induced by cutaneous melanoma in both mice and humans.

A Novel LncRNA SNHG3 Promotes Osteoblast Differentiation Through BMP2 Upregulation in Aortic Valve Calcification

Based on high-throughput transcriptomic sequencing, SNHG3 was among the most highly expressed long noncoding RNAs in calcific aortic valve disease. SNHG3 upregulation was verified in human and mouse calcified aortic valves. Moreover, in vivo and in vitro studies showed SNHG3 silencing markedly ameliorated aortic valve calcification. In-depth functional assays showed SNHG3 physically interacted with polycomb repressive complex 2 to suppress the H3K27 trimethylation BMP2 locus, which in turn activated BMP2 expression and signaling pathways.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com