RNAscope

Systematic mapping of nuclear domain-associated transcripts reveals speckles and lamina as hubs of functionally distinct retained introns

The nucleus is highly compartmentalized through the formation of distinct classes of membraneless domains. However, the composition and function of many of these structures are not well understood. Using APEX2-mediated proximity labeling and RNA sequencing, we surveyed human transcripts associated with nuclear speckles, several additional domains, and the lamina. Remarkably, speckles and lamina are associated with distinct classes of retained introns enriched in genes that function in RNA processing, translation, and the cell cycle, among other processes.

Inhibiting Hv1 channel in peripheral sensory neurons attenuates chronic inflammatory pain and opioid side effects

Both opioids and nonsteroidal anti-inflammatory drugs (NSAIDS) produce deleterious side effects and fail to provide sustained relief in patients with chronic inflammatory pain. Peripheral neuroinflammation (PN) is critical for initiation and development of inflammatory pain. A better understanding of molecular mechanisms underlying PN would facilitate the discovery of new analgesic targets and the development of new therapeutics.

EGFR signaling promotes nuclear translocation of plasma membrane protein TSPAN8 to enhance tumor progression via STAT3-mediated transcription

TSPAN family of proteins are generally considered to assemble as multimeric complexes on the plasma membrane. Our previous work uncovered that TSPAN8 can translocate into the nucleus as a membrane-free form, a process that requires TSPAN8 palmitoylation and association with cholesterol to promote its extraction from the plasma membrane and subsequent binding with 14-3-3θ and importin-β. However, what upstream signal(s) regulate(s) the nuclear translocation of TSPAN8, the potential function of TSPAN8 in the nucleus, and the underlying molecular mechanisms all remain unclear.

Deterministic scRNA-seq captures variation in intestinal crypt and organoid composition

Single-cell RNA sequencing (scRNA-seq) approaches have transformed our ability to resolve cellular properties across systems, but are currently tailored toward large cell inputs (>1,000 cells). This renders them inefficient and costly when processing small, individual tissue samples, a problem that tends to be resolved by loading bulk samples, yielding confounded mosaic cell population read-outs. Here, we developed a deterministic, mRNA-capture bead and cell co-encapsulation dropleting system, DisCo, aimed at processing low-input samples (<500 cells).

Telomere dysfunction in ageing and age-related diseases

Ageing organisms accumulate senescent cells that are thought to contribute to body dysfunction. Telomere shortening and damage are recognized causes of cellular senescence and ageing. Several human conditions associated with normal ageing are precipitated by accelerated telomere dysfunction. Here, we systematize a large body of evidence and propose a coherent perspective to recognize the broad contribution of telomeric dysfunction to human pathologies.

Engineered Wnt ligands enable blood-brain barrier repair in neurological disorders

The blood-brain barrier (BBB) protects the central nervous system (CNS) from harmful blood-borne factors. Although BBB dysfunction is a hallmark of several neurological disorders, therapies to restore BBB function are lacking. An attractive strategy is to repurpose developmental BBB regulators, such as Wnt7a, into BBB-protective agents. However, safe therapeutic use of Wnt ligands is complicated by their pleiotropic Frizzled signaling activities.

Single-cell atlases: shared and tissue-specific cell types across human organs

The development of single-cell and spatial transcriptomics methods was instrumental in the conception of the Human Cell Atlas initiative, which aims to generate an integrated map of all cells across the human body. These technology advances are bringing increasing depth and resolution to maps of human organs and tissues, as well as our understanding of individual human cell types. Commonalities as well as tissue-specific features of primary and supportive cell types across human organs are beginning to emerge from these human tissue maps.

Curated variation benchmarks for challenging medically relevant autosomal genes

The repetitive nature and complexity of some medically relevant genes poses a challenge for their accurate analysis in a clinical setting. The Genome in a Bottle Consortium has provided variant benchmark sets, but these exclude nearly 400 medically relevant genes due to their repetitiveness or polymorphic complexity. Here, we characterize 273 of these 395 challenging autosomal genes using a haplotype-resolved whole-genome assembly.

Application of CRISPR-Based Technology in Medical Research and Disease Treatment

Seeking treatments for human diseases is an important goal and motivation of biomedical research. Over thousands of years, humans have gradually formed a series of treatment plans for diseases, which have gradually evolved into modern medicine. Although many common diseases have been overcome, a cure for diseases caused by genetic mutations, including congenital genetic diseases, is still lacking. To overcome genetic diseases caused by DNA mutations, new strategies must be developed.

Brain systems in cocaine abstinence-induced anxiety-like behavior in rodents: A review Running header: Cocaine abstinence induces anxiety-like behavior in rodents

Cocaine use disorder (CUD) is a significant public health issue that generates substantial personal, familial, and economic burdens. Still, there are no FDA-approved pharmacotherapies for CUD. Cocaine-dependent individuals report anxiety during withdrawal, and alleviation of anxiety and other negative affective states may be critical for maintaining drug abstinence. However, the neurobiological mechanisms underlying abstinence-related anxiety in humans or anxiety-like behavior in rodents are not fully understood.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com