RNAscope 2.5 LS Assay

Expression and Significance of Cytokeratin 7, a Squamocolumnar Junction Marker, in Head and Neck Squamous Cell Carcinoma.

The favorable features of high-risk human papillomavirus (HPV) in the head and neck are limited to those harboring transcriptionally-active HPV, which occur predominantly in the oropharynx (OP). Factors rendering the OP susceptible to HPV oncogenesis are largely unexplored. The role of cytokeratin 7 (CK7) in predisposition to HPV and cancer in the cervix has been evaluated. However, its significance in the H&N is unknown.

p16 Immunohistochemistry in Oropharyngeal Squamous Cell Carcinoma Using the E6H4 Antibody Clone: A Technical Method Study for Optimal Dilution.

Routine testing for p16 immunohistochemistry (with selective HPV-specific test use) has been recommended for clinical practice in oropharyngeal squamous cell carcinoma (OPSCC). Data suggests that the E6H4 clone performs best for this purpose, yet no studies have evaluated the optimal antibody concentration for OPSCC testing.

Sonic Hedgehog Agonist Protects Against Complex Neonatal Cerebellar Injury

The cerebellum undergoes rapid growth during the third trimester and is vulnerable to injury and deficient growth in infants born prematurely. Factors associated with preterm cerebellar hypoplasia include chronic lung disease and postnatal glucocorticoid administration. We modeled chronic hypoxemia and glucocorticoid administration in neonatal mice to study whole cerebellar and cell type-specific effects of dual exposure.

HPV E6/E7 mRNA In Situ Hybridization in the Diagnosis of Cervical Low-grade Squamous Intraepithelial Lesions (LSIL)

Cervical low-grade squamous intraepithelial lesions (LSIL) (aka cervical intraepithelial neoplasia, grade 1 [CIN1]) can present considerable diagnostic challenges and are associated with poor interobserver reproducibility and overdiagnosis. Furthermore, ancillary studies such as p16 immunohistochemistry have shown little utility in resolving the LSIL versus negative/reactive differential.

SOX9 predicts progression toward cirrhosis in patients while its loss protects against liver fibrosis

Fibrosis and organ failure is a common endpoint for many chronic liver diseases. Much is known about the upstream inflammatory mechanisms provoking fibrosis and downstream potential for tissue remodeling.

The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL

Growth/differentiation factor 15 (GDF15), also known as MIC-1, is a distant member of the transforming growth factor-β (TGF-β) superfamily and has been implicated in various biological functions, including cancer cachexia, renal and heart failure, atherosclerosis and metabolism.

Automated RNA In Situ Hybridization for 18 High Risk Human Papilloma Viruses in Squamous Cell Carcinoma of the Head and Neck: Comparison With p16 Immunohistochemistry.

Detection of human papilloma virus (HPV)-related head and neck squamous cell carcinoma (HNSCC) is important, as HPV-associated HNSCCs respond better to therapy. The RNAscope HPV-test is a novel RNA in situ hybridization (ISH) technique which strongly stains transcripts of E6 and E7 mRNA in formalin-fixed, paraffin-embedded tissue, with the potential to replace the indirect immunohistochemical (IHC) marker for p16 protein.

ErbB activation signatures as potential biomarkers for anti-ErbB3 treatment in HNSCC

Head and neck squamous cell carcinoma (HNSCC) accounts for 3-5% of all tumor types and remains an unmet medical need with only two targeted therapies approved to date. ErbB3 (HER3), the kinase-impaired member of the EGFR/ErbB family, has been implicated as a disease driver in a number of solid tumors, including a subset of HNSCC.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com