RNAscope 2.5 HD Brown Assay

Transient acquisition of cross-species infectivity during the evolution of SARS-CoV-2

Laboratory mice are susceptible to infection with the SARS-CoV-2 501Y.V2 variant. (A) Body weight changes in nine-month-old female BALB/c mice infected intranasally with 501Y.V2 or IME-BJ05 at a dose of 1.2 × 104 pfu per mouse. _n_ = 5. (B) Tissue distribution of SARS-CoV-2 sgRNA. Each tissue and serum sample was subjected to viral sgRNA copy analysis by real-time qPCR. The dotted lines denote the detection limit (_n_ = 3). (C) ISH assay for viral RNA in lung tissues from mice infected with 501Y.V2 or treated with PBS (mock) on day 3 post infection. Positive signals are shown in brown.

Impairment in renal medulla development underlies salt wasting in Clc-k2 channel deficiency

The prevailing view is that ClC-Ka chloride channel (mouse Clc-k1) functions in thin ascending limb for urine concentration, whereas ClC-Kb (mouse Clc-k2) in thick ascending limb (TAL) for salt reabsorption, respectively. Mutations of ClC-Kb cause classic Bartter syndrome with renal salt wasting with onset from perinatal to adolescent. We study the roles of Clc-k channels in perinatal mouse kidneys using constitutive or inducible kidney-specific gene ablation and 2-D and advanced 3-D imaging of optically cleared kidneys.

Dietary suppression of MHC class II expression in intestinal epithelial cells enhances intestinal tumorigenesis

Little is known about how interactions of diet, intestinal stem cells (ISCs), and immune cells affect early-stage intestinal tumorigenesis. We show that a high-fat diet (HFD) reduces the expression of the major histocompatibility complex class II (MHC class II) genes in intestinal epithelial cells, including ISCs. This decline in epithelial MHC class II expression in a HFD correlates with reduced intestinal microbiome diversity. Microbial community transfer experiments suggest that epithelial MHC class II expression is regulated by intestinal flora.

WNT16 is Robustly Increased by Oncostatin M in Mouse Calvarial Osteoblasts and Acts as a Negative Feedback Regulator of Osteoclast Formation Induced by Oncostatin M

Bone loss is often observed adjacent to inflammatory processes. The WNT signaling pathways have been implicated as novel regulators of both immune responses and bone metabolism. WNT16 is important for cortical bone mass by inhibiting osteoclast differentiation, and we have here investigated the regulation of WNT16 by several members of the pro-inflammatory gp130 cytokine family.The expression and regulation of Wnt16 in primary murine cells were studied by qPCR, scRNAseq and in situ hybridization. Signaling pathways were studied by siRNA silencing.

High CYP27A1 expression is a biomarker of favorable prognosis in premenopausal patients with estrogen receptor positive primary breast cancer

27-hydroxycholesterol (27HC), synthesized from cholesterol by the enzyme CYP27A1, differentially impacts estrogen receptor positive (ER+) breast cancer (BC) cell growth depending on estrogen levels. This study examined the association between CYP27A1 expression and prognosis in a cohort of 193 premenopausal patients with lymph node-negative primary BC with limited exposure to adjuvant systemic cancer treatments.

Constitutive expression of inducible nitric oxide synthase in healthy rat urothelium?

Contrasting findings have been reported regarding a possible constitutive expression of inducible nitric oxide synthase (iNOS) in a normal mammalian bladder. The current study was designed to further investigate such putative iNOS expression.The experiments were conducted with paraffin-embedded archival material from the urinary bladder of 6 normal, male Sprague-Dawley rats. In addition, two normal female mice (C57BL/6) were sacrificed and the urinary bladders were harvested. The occurrence of iNOS mRNA was examined by the RNAScope in situ hybridization method.

Transcriptional profiling of equine endometrium before, during and after capsule disintegration during normal pregnancy and after oxytocin-induced luteostasis in non-pregnant mares

The current study used RNA sequencing to determine transcriptional profiles of equine endometrium collected 14, 22, and 28 days after ovulation from pregnant mares. In addition, the transcriptomes of endometrial samples obtained 20 days after ovulation from pregnant mares, and from non-pregnant mares which displayed and failed to display extended luteal function following the administration of oxytocin, were determined and compared in order to delineate genes whose expressions depend on the presence of the conceptus as opposed to elevated progesterone alone.

Single-cell RNA-sequencing analysis of the ciliary epithelium and contiguous tissues in the mouse eye

The ciliary epithelium plays a central role in ocular homeostasis but cells of the pigmented and non-pigmented layers are difficult to isolate physically and study. Here we used single-cell RNA-sequencing (scRNA-seq) to analyze the transcriptional signatures of cells harvested from the ciliary body and contiguous tissues. Microdissected tissue was dissociated by collagenase digestion and the transcriptomes of individual cells were obtained using a droplet-based scRNA-seq approach. In situ hybridization was used to verify the expression patterns of selected differentially-expressed genes.

SARS-CoV-2 causes lung infection without severe disease in human ACE2 knock-in mice

The development of mouse models for COVID-19 has enabled testing of vaccines and therapeutics and defining aspects of SARS-CoV-2 pathogenesis. SARS-CoV-2 disease is severe in K18 transgenic mice (K18-hACE2-Tg) expressing human ACE2 (hACE2), the SARS-CoV-2 receptor, under an ectopic cytokeratin promoter, with high levels of infection measured in the lung and brain. Here, we evaluated SARS-CoV-2 infection in hACE2 KI mice that express hACE2 under an endogenous promoter in place of murine ACE2 (mACE2).

SLAMF8 expression predicts the efficacy of anti-PD1 immunotherapy in gastrointestinal cancers

Epstein-Barr virus (EBV) infection is associated with a better response to anti-PD1 immunotherapy. We hypothesised that genetic alterations induced by EBV infection are responsible for the activation of key immune responses and hence are predictive of anti-PD1 efficacy.With transcriptome data of gastric cancer (GC), we explored differentially expressed genes (DEGs) specific for EBV infection and performed coexpression network analysis using the DEGs to identify the consistent coexpression genes (CCGs) between EBV-positive and EBV-negative GC tissues.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com