RNAscope 2.5 HD Brown Assay

TRIM63 is a sensitive and specific biomarker for MiT family aberration-associated renal cell carcinoma

Microphthalmia-associated transcription factor (MiT) family aberration-associated renal cell carcinoma (MiTF-RCC) is a subtype of renal cell carcinoma harboring recurrent chromosomal rearrangements involving TFE3 or TFEB genes. MiTF-RCC is morphologically diverse, can histologically resemble common RCC subtypes like clear cell RCC and papillary RCC, and often poses a diagnostic challenge in genitourinary clinical and pathology practice.

Enhanced Ca2+ signaling, mild primary aldosteronism, and hypertension in a familial hyperaldosteronism mouse model (Cacna1h\n M1560V/+\n )

Gain-of-function mutations in the CACNA1H gene (encoding the T-type calcium channel CaV3.2) cause autosomal-dominant familial hyperaldosteronism type IV (FH-IV) and early-onset hypertension in humans. We used CRISPR/Cas9 to generate Cacna1h M1560V/+ knockin mice as a model of the most common FH-IV mutation, along with corresponding knockout mice (Cacna1h -/- ). Adrenal morphology of both Cacna1h M1560V/+ and Cacna1h -/- mice was normal. Cacna1h M1560V/+ mice had elevated aldosterone:renin ratios (a screening parameter for primary aldosteronism).

CD24 Contributes to Treatment Effect in ABC-DLBCL Patients with R-CHOP Resistance

PURPOSE: Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin’s lymphoma and of which the prognosis of activated B-cell-like (ABC) subtype is poor. Although R-CHOP significantly improves the survival of patients with DLBCL, 20% to 40% of patients were resistant to R-CHOP therapy. Thus, screening for candidate therapeutic targets for R-CHOP resistant patients is urgent. The previous researches have shown that CD24 is related to the development, invasion, and metastasis of cancer. Our project aims to clarify the relationship between CD24 and ABC-DLBCL.

Human Adult Fibroblast-like Synoviocytes and Articular Chondrocytes Exhibit Prominent Overlap in Their Transcriptomic Signatures

Fibroblast-like synoviocytes (FLS) and articular chondrocytes (AC) derive from a common pool of embryonic precursor cells. They are currently believed to engage in largely distinct differentiation programs to build synovium and articular cartilage and maintain healthy tissues throughout life. We tested this hypothesis by deeply characterizing and comparing their transcriptomic attributes.

WNT signaling in pre-granulosa cells is required for ovarian folliculogenesis and female fertility

In mammalian ovaries, immature oocytes are reserved in primordial follicles until their activation for potential ovulation. Precise control of primordial follicle activation (PFA) is essential for reproduction, but how this is achieved is unclear. Here, we show that canonical wingless-type MMTV integration site family (WNT) signaling is pivotal for pre-granulosa cell (pre-GC) activation during PFA. We identified several WNT ligands expressed in pre-GCs that act in an autocrine manner.

LINC01133 promotes hepatocellular carcinoma progression by sponging miR-199a-5p and activating annexin A2

Long noncoding RNAs (lncRNAs) are functionally associated with cancer development and progression. Although gene copy number variation (CNV) is common in hepatocellular carcinoma (HCC), it is not known how CNV in lncRNAs affects HCC progression and recurrence. We aimed to identify a CNV-related lncRNA involved in HCC progression and recurrence and illustrate its underlying mechanisms and prognostic value. We analyzed the whole genome sequencing (WGS) data of matched cancerous and noncancerous liver samples from 49 patients with HCC to identify lncRNAs with CNV.

T cells expressing receptor recombination/revision machinery are detected in the tumor microenvironment and expanded in genomically over-unstable models

Tumors undergo dynamic immunoediting as part of a process that balances immunological sensing of emerging neoantigens and evasion from immune responses. Tumor-infiltrating lymphocytes (TILs) comprise heterogeneous subsets of peripheral T cells characterized by diverse functional differentiation states and dependence on TCR specificity gained through recombination events during their development.

Role of IQGAP1 in Papillomavirus-Associated Head and Neck Tumorigenesis

Approximately 25% of head and neck squamous cell carcinomas (HNSCC) are associated with human papillomavirus (HPV) infection. In these cancers as well as in HPV-associated anogenital cancers, PI3K signaling is highly activated. We previously showed that IQ motif-containing GTPase activating protein 1 (IQGAP1), a PI3K pathway scaffolding protein, is overexpressed in and contributes to HNSCC and that blocking IQGAP1-mediated PI3K signaling reduces HPV-positive HNSCC cell survival and migration. In this study, we tested whether IQGAP1 promotes papillomavirus (PV)-associated HNSCCs.

Endoplasmic reticulum stress regulates the intestinal stem cell state through CtBP2

Enforcing differentiation of cancer stem cells is considered as a potential strategy to sensitize colorectal cancer cells to irradiation and chemotherapy. Activation of the unfolded protein response, due to endoplasmic reticulum (ER) stress, causes rapid stem cell differentiation in normal intestinal and colon cancer cells. We previously found that stem cell differentiation was mediated by a Protein kinase R-like ER kinase (PERK) dependent arrest of mRNA translation, resulting in rapid protein depletion of WNT-dependent transcription factor c-MYC.

Long noncoding RNA SH3PXD2A-AS1 promotes colorectal cancer progression by regulating p53-mediated gene transcription

Long non-coding RNAs (lncRNAs) play key roles in various human cancers. We aimed to determine the key lncRNAs mediating colorectal cancer (CRC) progression. We identified some lncRNAs aberrantly expressed in CRC tissues by using lncRNA microarrays and demonstrated that SH3PXD2A-AS1 was one of the most highly overexpressed lncRNAs in CRC. We further aimed to explore the roles and possible molecular mechanisms of SH3PXD2A-AS1 in CRC. RNA ISH revealed that SH3PXD2A-AS1 was overexpressed in CRC compared with adjacent normal colon tissues and indicated poor prognosis in CRC.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com