RNAscope 2.5 HD Brown Assay

Detection of HPV infection in urothelial carcinoma using RNAscope: Clinicopathological characterization

Human papillomavirus (HPV) is a well-established mucosotropic carcinogen, but its impact on urothelial neoplasm is unclear. We aimed to clarify the clinical and pathological features of HPV-related urothelial carcinoma (UC).Tissue samples of 228 cases of UC were obtained from the bladder, upper and lower urinary tract, and metastatic sites to construct a tissue microarray. The samples were analyzed for the presence of HPV by a highly sensitive and specific mRNA in situ hybridization (RISH) technique (RNAscope) with a probe that can detect 18 varieties of high-risk HPV.

Pathogenic Characterization of a Porcine Circovirus Type 3 Isolate from Heilongjiang, China

The clinical outcome of porcine circovirus 3 (PCV3) infection is still controversial. Herein, a novel PCV3 isolate (PCV3-China/DB-1/2017) with the molecular characterization of 24A and 27K in the Cap protein was used to inoculate three-week-old cesarean-derived, colostrum-deprived piglets. The nine PCV3 DB-1 inoculated piglets exhibited no obvious clinical symptoms or macroscopic lesions.

Gonadal somatic cell-specific transforming growth factor-β superfamily member in the Yesso scallop reveals gonadal somatic cell distribution during the reproductive phase

The objective of this study was to identify the gonadal somatic cells in the Yesso scallop using a novel molecular marker. This study is the first to identify the bone morphogenetic protein 2a (Bmp2a) gene as a gonadal somatic cell-specific gene in this bivalve. We performed a transcriptomic survey to identify the transforming growth factor-β (TGFβ) superfamily members that act in Yesso scallop gonad development.

Structural and Functional Characterization of a Testicular Long Non-coding RNA (4930463O16Rik) Identified in the Meiotic Arrest of the Mouse Topaz1 -/- Testes

Spermatogenesis involves coordinated processes, including meiosis, to produce functional gametes. We previously reported Topaz1 as a germ cell-specific gene highly conserved in vertebrates. Topaz1 knockout males are sterile with testes that lack haploid germ cells because of meiotic arrest after prophase I. To better characterize Topaz1 -/- testes, we used RNA-sequencing analyses at two different developmental stages (P16 and P18). The absence of TOPAZ1 disturbed the expression of genes involved in microtubule and/or cilium mobility, biological processes required for spermatogenesis.

First-in-human DR5 PET reveals insufficient DR5 expression in patients with gastrointestinal cancer

Death receptor 5 (DR5) is a promising therapeutic target for cancer therapy. However, many clinical trials of DR5 agonists failed to show significant therapeutic efficacy in patients with cancer. The study aimed to investigate the feasibility of using 89Zr-CTB006 positron emission tomography (PET) for noninvasive imaging of DR5 expression in preclinical models and patients with gastrointestinal (GI) cancers.Balb/c, Sp2/0 xenograft and patient-derived tumor xenograft were employed for micro-PET/CT imaging in vivo.

Novel Morbillivirus as Putative Cause of Fetal Death and Encephalitis among Swine

Morbilliviruses are highly contagious pathogens. The Morbillivirus genus includes measles virus, canine distemper virus (CDV), phocine distemper virus (PDV), peste des petits ruminants virus, rinderpest virus, and feline morbillivirus. We detected a novel porcine morbillivirus (PoMV) as a putative cause of fetal death, encephalitis, and placentitis among swine by using histopathology, metagenomic sequencing, and in situ hybridization. Phylogenetic analyses showed PoMV is most closely related to CDV (62.9% nt identities) and PDV (62.8% nt identities).

SARS-CoV-2 infection in the mouse olfactory system

SARS-CoV-2 infection causes a wide spectrum of clinical manifestations in humans, and olfactory dysfunction is one of the most predictive and common symptoms in COVID-19 patients. However, the underlying mechanism by which SARS-CoV-2 infection leads to olfactory disorders remains elusive. Herein, we demonstrate that intranasal inoculation with SARS-CoV-2 induces robust viral replication in the olfactory epithelium (OE), not the olfactory bulb (OB), resulting in transient olfactory dysfunction in humanized ACE2 (hACE2) mice.

A Novel Model for Papillomavirus-Mediated Anal Disease and Cancer Using the Mouse Papillomavirus

Up to 95% of all anal cancers are associated with infection by human papillomavirus (HPV); however, no established preclinical model exists for high-grade anal disease and cancer mediated by a natural papillomavirus infection. To establish an infection-mediated model, we infected both immunocompromised NSG and immunocompetent FVB/NJ mice with the recently discovered murine papillomavirus MmuPV1, with and without the additional cofactors of UV B radiation (UVB) and/or the chemical carcinogen 7,12-dimethylbenz(a)anthracene (DMBA).

ERα determines the chemoresistant function of mutant p53 involving the switch between lincRNA-p21 and DDB2 expressions

Mutant p53 (mutp53) commonly loses their DNA binding affinity to p53 response elements (p53REs) and fails to induce apoptosis fully. However, the p53 mutation does not predict chemoresistance in all subtypes of breast cancers, and the critical determinants remain to be identified. In this study, mutp53 was found to mediate chemotherapy-induced lincRNA-p21 expression by targeting the G-quadruplex structure rather than the p53RE on its promoter to promote chemosensitivity.

A neural substrate of compulsive alcohol use

Alcohol intake remains controlled in a majority of users but becomes "compulsive," i.e., continues despite adverse consequences, in a minority who develop alcohol addiction. Here, using a footshock-punished alcohol self-administration procedure, we screened a large population of outbred rats to identify those showing compulsivity operationalized as punishment-resistant self-administration.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com