Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for LONG

ACD can configure probes for the various manual and automated assays for LONG for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

ACD’s data images for Long gene.

  • RNA expression of long gene in Human Colorectal cancer sample using RNAscope™ 2.5 HD Assay Brown

  • RNA expression of long gene in Human Gastric cancer sample using RNAscope™ 2.5 HD Assay Brown

  • RNA expression of long gene in Human Glioma sample using RNAscope™ 2.5 HD Assay Brown

  • RNA expression of long gene in Human Lung cancer sample using RNAscope™ 2.5 HD Assay Brown

  • RNA expression of long gene in Human ovarian cancer sample using RNAscope™ 2.5 HD Assay Brown

  • Expression of long in Human Prostate cancer sample using RNAscope™ 2.5 HD Assay Brown

  • Probes for Long (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (56)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (4) Apply TBD filter
  • ACTA2 (2) Apply ACTA2 filter
  • Gad1 (2) Apply Gad1 filter
  • Cdh13 (2) Apply Cdh13 filter
  • Slc17a7 (2) Apply Slc17a7 filter
  • ANGPT2 (1) Apply ANGPT2 filter
  • Ostn (1) Apply Ostn filter
  • Rbfox3 (1) Apply Rbfox3 filter
  • CCL5 (1) Apply CCL5 filter
  • Sp7 (1) Apply Sp7 filter
  • COL1A1 (1) Apply COL1A1 filter
  • Fcrls (1) Apply Fcrls filter
  • Htt (1) Apply Htt filter
  • Neat1 (1) Apply Neat1 filter
  • DRD1 (1) Apply DRD1 filter
  • ICAM1 (1) Apply ICAM1 filter
  • FOS (1) Apply FOS filter
  • PTPRD (1) Apply PTPRD filter
  • GATA5 (1) Apply GATA5 filter
  • GFAP (1) Apply GFAP filter
  • HES1 (1) Apply HES1 filter
  • IDO1 (1) Apply IDO1 filter
  • Trpc6 (1) Apply Trpc6 filter
  • Sst (1) Apply Sst filter
  • LOC646329 (1) Apply LOC646329 filter
  • Stxbp6 (1) Apply Stxbp6 filter
  • MKI67 (1) Apply MKI67 filter
  • PDGFRA (1) Apply PDGFRA filter
  • Gad2 (1) Apply Gad2 filter
  • H19 (1) Apply H19 filter
  • Nlgn2 (1) Apply Nlgn2 filter
  • Foxl1 (1) Apply Foxl1 filter
  • TXNIP (1) Apply TXNIP filter
  • Neurod6 (1) Apply Neurod6 filter
  • Ascl1 (1) Apply Ascl1 filter
  • Bdnf (1) Apply Bdnf filter
  • CHRM2 (1) Apply CHRM2 filter
  • Cdh5 (1) Apply Cdh5 filter
  • Grin2c (1) Apply Grin2c filter
  • Chat (1) Apply Chat filter
  • Slc17a6 (1) Apply Slc17a6 filter
  • Ms4a7 (1) Apply Ms4a7 filter
  • Pomc (1) Apply Pomc filter
  • Dmd (1) Apply Dmd filter
  • MAF (1) Apply MAF filter
  • CARTPT (1) Apply CARTPT filter
  • Wif1 (1) Apply Wif1 filter
  • Grin1 (1) Apply Grin1 filter
  • Tshz2 (1) Apply Tshz2 filter
  • Nr4a1 (1) Apply Nr4a1 filter

Product

  • (-) Remove RNAscope Multiplex Fluorescent Assay filter RNAscope Multiplex Fluorescent Assay (56)

Research area

  • Neuroscience (22) Apply Neuroscience filter
  • Development (14) Apply Development filter
  • lncRNA (12) Apply lncRNA filter
  • Cancer (7) Apply Cancer filter
  • LncRNAs (6) Apply LncRNAs filter
  • Autism (2) Apply Autism filter
  • Covid (2) Apply Covid filter
  • Inflammation (2) Apply Inflammation filter
  • Stem Cells (2) Apply Stem Cells filter
  • Alzheimer's Disease (1) Apply Alzheimer's Disease filter
  • Atherosclerosis (1) Apply Atherosclerosis filter
  • Behavior (1) Apply Behavior filter
  • Behavorial (1) Apply Behavorial filter
  • Bone (1) Apply Bone filter
  • CGT (1) Apply CGT filter
  • Circadian clock (1) Apply Circadian clock filter
  • Circadian Rhythm (1) Apply Circadian Rhythm filter
  • Enteric viruses (1) Apply Enteric viruses filter
  • Epstein-Barr (1) Apply Epstein-Barr filter
  • Feeding Behavior (1) Apply Feeding Behavior filter
  • Huntington's Disease (1) Apply Huntington's Disease filter
  • Infectious Disease (1) Apply Infectious Disease filter
  • Injury (1) Apply Injury filter
  • Jet Leg (1) Apply Jet Leg filter
  • Kidney (1) Apply Kidney filter
  • Metabolism (1) Apply Metabolism filter
  • Non-coding RNAs (1) Apply Non-coding RNAs filter
  • Other: Cell Biology (1) Apply Other: Cell Biology filter
  • Other: Methods (1) Apply Other: Methods filter
  • Pain (1) Apply Pain filter
  • Stem cell (1) Apply Stem cell filter
  • Stress Related Eating (1) Apply Stress Related Eating filter
  • Tramautic Stress (1) Apply Tramautic Stress filter

Category

  • Publications (56) Apply Publications filter
Transcriptome and chromatin alterations in social fear indicate association of MEG3 with successful extinction of fear

Molecular psychiatry

2022 Mar 25

Royer, M;Pai, B;Menon, R;Bludau, A;Gryksa, K;Perry, RB;Ulitsky, I;Meister, G;Neumann, ID;
PMID: 35338311 | DOI: 10.1038/s41380-022-01481-2

Social anxiety disorder is characterized by a persistent fear and avoidance of social situations, but available treatment options are rather unspecific. Using an established mouse social fear conditioning (SFC) paradigm, we profiled gene expression and chromatin alterations after the acquisition and extinction of social fear within the septum, a brain region important for social fear and social behaviors. Here, we particularly focused on the successful versus unsuccessful outcome of social fear extinction training, which corresponds to treatment responsive versus resistant patients in the clinics. Validation of coding and non-coding RNAs revealed specific isoforms of the long non-coding RNA (lncRNA) Meg3 regulated, depending on the success of social fear extinction. Moreover, PI3K/AKT was differentially activated with extinction success in SFC-mice. In vivo knockdown of specific Meg3 isoforms increased baseline activity of PI3K/AKT signaling, and mildly delayed social fear extinction. Using ATAC-Seq and CUT&RUN, we found alterations in the chromatin structure of specific genes, which might be direct targets of lncRNA Meg3.
A neomorphic variant in SP7 alters sequence specificity and causes a high-turnover bone disorder

Nature communications

2022 Feb 04

Lui, JC;Raimann, A;Hojo, H;Dong, L;Roschger, P;Kikani, B;Wintergerst, U;Fratzl-Zelman, N;Jee, YH;Haeusler, G;Baron, J;
PMID: 35121733 | DOI: 10.1038/s41467-022-28318-4

SP7/Osterix is a transcription factor critical for osteoblast maturation and bone formation. Homozygous loss-of-function mutations in SP7 cause osteogenesis imperfecta type XII, but neomorphic (gain-of-new-function) mutations of SP7 have not been reported in humans. Here we describe a de novo dominant neomorphic missense variant (c.926 C > G:p.S309W) in SP7 in a patient with craniosynostosis, cranial hyperostosis, and long bone fragility. Histomorphometry shows increased osteoblasts but decreased bone mineralization. Mice with the corresponding variant also show a complex skeletal phenotype distinct from that of Sp7-null mice. The mutation alters the binding specificity of SP7 from AT-rich motifs to a GC-consensus sequence (typical of other SP family members) and produces an aberrant gene expression profile, including increased expression of Col1a1 and endogenous Sp7, but decreased expression of genes involved in matrix mineralization. Our study identifies a pathogenic mechanism in which a mutation in a transcription factor shifts DNA binding specificity and provides important in vivo evidence that the affinity of SP7 for AT-rich motifs, unique among SP proteins, is critical for normal osteoblast differentiation.
Vision-dependent specification of cell types and function in the developing cortex

Cell

2022 Jan 20

Cheng, S;Butrus, S;Tan, L;Xu, R;Sagireddy, S;Trachtenberg, JT;Shekhar, K;Zipursky, SL;
PMID: 35063073 | DOI: 10.1016/j.cell.2021.12.022

The role of postnatal experience in sculpting cortical circuitry, while long appreciated, is poorly understood at the level of cell types. We explore this in the mouse primary visual cortex (V1) using single-nucleus RNA sequencing, visual deprivation, genetics, and functional imaging. We find that vision selectively drives the specification of glutamatergic cell types in upper layers (L) (L2/3/4), while deeper-layer glutamatergic, GABAergic, and non-neuronal cell types are established prior to eye opening. L2/3 cell types form an experience-dependent spatial continuum defined by the graded expression of ∼200 genes, including regulators of cell adhesion and synapse formation. One of these genes, Igsf9b, a vision-dependent gene encoding an inhibitory synaptic cell adhesion molecule, is required for the normal development of binocular responses in L2/3. In summary, vision preferentially regulates the development of upper-layer glutamatergic cell types through the regulation of cell-type-specific gene expression programs.
LINC00885 promotes cervical cancer progression through sponging miR-3150b-3p and upregulating BAZ2A

Biology direct

2022 Jan 10

Liu, Y;Chen, J;Zhou, L;Yin, C;
PMID: 35012615 | DOI: 10.1186/s13062-021-00314-6

Cervical cancer (CC) is one of the most common malignancies affecting female worldwide. Long non-coding RNAs (lncRNAs) are increasingly indicated as crucial participants and promising therapeutic targets in human cancers. The main objective of this study was to explore the functions and mechanism of LINC00885 in CC.RT-qPCR and western blot were used to detect RNA and protein levels. Functional and mechanism assays were respectively done for the analysis of cell behaviors and molecular interplays.Long intergenic non-coding RNA 885 (LINC00885) was discovered to be upregulated in CC tissues and cell lines through bioinformatics analysis and RT-qPCR. Overexpression of LINC00885 promoted proliferation and inhibited apoptosis, whereas its silence exerted opposite effects. The cytoplasmic localization of LINC00885 was ascertained and furthermore, LINC00885 competitively bound with miR-3150b-3p to upregulate BAZ2A expression in CC cells. Rescue assays confirmed that LINC00885 regulated CC proliferation and apoptosis through miR-3150b-3p/BAZ2A axis. Finally, we confirmed that LINC00885 aggravated tumor growth through animal experiments.LINC00885 exerted oncogenic function in CC via regulating miR-3150b-3p/BAZ2A axis. These findings suggested LINC00885 might serve as a potential promising therapeutic target for CC patients.
LncRNA PCIR Is an Oncogenic Driver via Strengthen the Binding of TAB3 and PABPC4 in Triple Negative Breast Cancer

Frontiers in oncology

2021 May 03

Guo, W;Li, J;Huang, H;Fu, F;Lin, Y;Wang, C;
PMID: 34012913 | DOI: 10.3389/fonc.2021.630300

Long non-coding RNAs (LncRNA) as the key regulators in all stages of tumorigenesis and metastasis. However, the underlying mechanisms are largely unknown. Here, we report a lncRNA RP11-214F16.8, which renamed Lnc-PCIR, is upregulated and higher RNA level of Lnc-PCIR was positively correlated to the poor survival of patients with triple negative breast cancer (TNBC) tissues. Lnc-PCIR overexpression significantly promoted cell proliferation, migration, and invasion in vitro and in vivo. RNA pulldown, RNA immunoprecipitation (RIP) and RNA transcriptome sequencing technology (RNA-seq) was performed to identify the associated proteins and related signaling pathways. Mechanistically, higher Lnc-PCIR level of blocks PABPC4 proteasome-dependent ubiquitination degradation; stable and highly expressed PABPC4 can further increase the stability of TAB3 mRNA, meanwhile, overexpression of Lnc-PCIR can disrupt the binding status of TAB3 and TAB2 which lead to activate the TNF-α/NF-κB pathway in TNBC cells. Our findings suggest that Lnc-PCIR promotes tumor growth and metastasis via up-regulating the mRNA/protein level of TAB3 and PABPC4, activating TNF-α/NF-κB signaling pathway in TNBC.
Detection of Epstein-Barr virus encoded RNA in fixed cells and tissues using CRISPR/Cas-mediated RCasFISH

Analytical biochemistry

2021 Apr 26

Chen, K;Wang, M;Zhang, R;Li, J;
PMID: 33915117 | DOI: 10.1016/j.ab.2021.114211

Identification of Epstein-Barr virus (EBV)-infected cells is critical for the diagnosis and clinical management of EBV-associated diseases. EBV-encoded RNA (EBER) located in the nucleus is a reliable marker due to its high levels of expression and inherent stability in tissue specimens. EBER in situ hybridization has long been the gold standard for detecting tumor-associated latent EBV infection and is valuable in determining the primary site and radiation fields of EBV-related malignancies. However, reliable detection is somewhat restricted by diffused signal and time-consuming procedure of this method, especially when proteins and RNA needed to be labeled simultaneously. Here, we optimized and validated our CRISPR-dCas9 mediated in situ RNA imaging tool-RCasFISH that enabled us to detect EBER rapidly and was compatible with IHC methods in fixed cells and tissue sections. Our approach could provide an attractive alternative for the molecular diagnosis of latent EBV infection.
Single-transcript multiplex in situ hybridisation reveals unique patterns of dystrophin isoform expression in the developing mammalian embryo

Wellcome Open res

2020 Apr 23

John C. W. Hildyard , Abbe H. Crawford, Faye Rawson, Dominique O. Riddell, Rachel C. M. Harron, Richard J. Piercy
| DOI: 10.12688/wellcomeopenres.15762.1)

Background: The dystrophin gene has multiple isoforms: full-length dystrophin (dp427) is principally known for its expression in skeletal and cardiac muscle, but is also expressed in the brain, and several internal promoters give rise to shorter, N-terminally truncated isoforms with wider tissue expression patterns (dp260 in the retina, dp140 in the brain and dp71 in many tissues). These isoforms are believed to play unique cellular roles both during embryogenesis and in adulthood, but their shared sequence identity at both mRNA and protein levels makes study of distinct isoforms challenging by conventional methods. Methods: RNAscope is a novel in-situ hybridisation technique that offers single-transcript resolution and the ability to multiplex, with different target sequences assigned to distinct fluorophores. Using probes designed to different regions of the dystrophin transcript (targeting 5', central and 3' sequences of the long dp427 mRNA), we can simultaneously detect and distinguish multiple dystrophin mRNA isoforms at sub-cellular histological levels. We have used these probes in healthy and dystrophic canine embryos to gain unique insights into isoform expression and distribution in the developing mammal. Results: Dp427 is found in developing muscle as expected, apparently enriched at nascent myotendinous junctions. Endothelial and epithelial surfaces express dp71 only. Within the brain and spinal cord, all three isoforms are expressed in spatially distinct regions: dp71 predominates within proliferating germinal layer cells, dp140 within maturing, migrating cells and dp427 appears within more established cell populations. Dystrophin is also found within developing bones and teeth, something previously unreported, and our data suggests orchestrated involvement of multiple isoforms in formation of these tissues. Conclusions: Overall, shorter isoforms appear associated with proliferation and migration, and longer isoforms with terminal lineage commitment: we discuss the distinct structural contributions and transcriptional demands suggested by these findings.
Cholinergic projections to the preBötzinger complex

The Journal of comparative neurology

2023 May 21

Biancardi, V;Yang, X;Ding, X;Passi, D;Funk, GD;Pagliardini, S;
PMID: 37211631 | DOI: 10.1002/cne.25497

Rhythmic inspiratory activity is generated in the preBötzinger complex (preBötC), a neuronal network located bilaterally in the ventrolateral medulla. Cholinergic neurotransmission affects respiratory rhythmogenic neurons and inhibitory glycinergic neurons in the preBötC. Acetylcholine has been extensively investigated given that cholinergic fibers and receptors are present and functional in the preBötC, are important in sleep/wake cycling, and modulate inspiratory frequency through its action on preBötC neurons. Despite its role in modulating inspiratory rhythm, the source of acetylcholine input to the preBötC is not known. In the present study, we used retrograde and anterograde viral tracing approaches in transgenic mice expressing Cre-recombinase driven by the choline acetyltransferase promoter to identify the source of cholinergic inputs to the preBötC. Surprisingly, we observed very few, if any, cholinergic projections originating from the laterodorsal and pedunculopontine tegmental nuclei (LDT/PPT), two main cholinergic, state-dependent systems long hypothesized as the main source of cholinergic inputs to the preBötC. On the contrary, we identified glutamatergic and GABAergic/glycinergic neurons in the PPT/LDT that send projections to the preBötC. Although these neurons contribute minimally to the direct cholinergic modulation of preBötC neurons, they could be involved in state-dependent regulation of breathing. Our data also suggest that the source of cholinergic inputs to the preBötC appears to originate from cholinergic neurons in neighboring regions of the medulla, the intermediate reticular formation, the lateral paragigantocellularis, and the nucleus of the solitary tract.
Prefrontal cortical protease TACE/ADAM17 is involved in neuroinflammation and stress-related eating alterations

bioRxiv : the preprint server for biology

2023 Jan 24

Sharafeddin, F;Ghaly, M;Simon, TB;Ontiveros-Ángel, P;Figueroa, JD;
PMID: 36747666 | DOI: 10.1101/2023.01.23.525269

Childhood traumatic stress profoundly affects prefrontal cortical networks regulating top-down control of eating and body weight. However, the neurobiological mechanisms contributing to trauma-induced aberrant eating behaviors remain largely unknown. Traumatic stress influences brain immune responses, which may, in turn, disrupt prefrontal cortical networks and behaviors. The tumor necrosis factor alpha-converting enzyme / a disintegrin and metalloproteinase 17 (TACE/ADAM17) is a sheddase with essential functions in brain maturation, behavior, and neuroinflammation. This study aimed to determine the role of TACE/ADAM17 on traumatic stress-induced disruption of eating patterns. We demonstrate a novel mechanistic connection between prefrontal cortical TACE/ADAM17 and trauma-induced eating behaviors. Fifty-two (52) adolescent Lewis rats (postnatal day, PND, 15) were injected intracerebrally either with a novel Accell SMARTpool ADAM17 siRNA or a corresponding siRNA vehicle. The RNAscope Multiplex Fluorescent v2 Assay was used to visualize mRNA expression. Observation cages were used to monitor ethological behaviors in a more naturalistic environment over long periods. We found that traumatic stress blunts startle reactivity and alter eating behaviors (increased intake and disrupted eating patterns). We also found that the rats that received prefrontal cortical TACE/ADAM17 siRNA administration exhibited decreased eating and increased grooming behaviors compared to controls. These changes were associated with decreased AIF-1 expression (a typical marker of microglia and neuroinflammation). This study demonstrates that prefrontal cortical TACE/ADAM17 is involved in neuroinflammation and may play essential roles in regulating feeding patterns under stress conditions. TACE/ADAM17 represents a promising target to ameliorate inflammation-induced brain and behavior alterations.
The Midbody and Midbody Remnant are Assembly Sites for RNA and Localized Translation

Available at SSRN 

2023 Jan 30

Park, S;Dahn, R;Kurt, E;Presle, A;VandenHeuvel, K;Moravec, C;Jambhekar, A;Olukoga, O;Shepherd, J;Echard, A;Blower, M;Skop, A;
| DOI: 10.2139/ssrn.4318824

The midbody (MB) is a transient structure at the spindle midzone that is required for cytokinesis, the terminal stage of cell division. Long ignored as a vestigial remnant of cytokinesis, we now know MBs are released post-abscission as extracellular vesicles called MB remnants (MBRs) and can modulate cell proliferation, fate decisions, tissue polarity, neuronal architecture, and tumorigenic behavior. Here, we demonstrate that the MB matrix—the structurally amorphous MB core of unknown composition—is the site of ribonucleoprotein assembly and is enriched in mRNAs that encode proteins involved in cell fate, oncogenesis, and pluripotency, that we are calling the MB granule. Using a quantitative transcriptomic approach, we identified a population of mRNAs enriched in mitotic MBs and confirmed their presence in signaling MBR vesicles released by abscission. The MB granule is unique in that it is translationally active, contains both small and large ribosomal subunits, and has both membrane-less and membranebound states. Both MBs and post-abscission MBRs are sites of spatiotemporally regulated translation, which is initiated when nascent daughter cells re-enter G1 and continues after extracellular release. We demonstrate that the MB is the assembly site of an RNP granule. MKLP1 and ARC are necessary for the localization and translation of RNA in the MB dark zone, whereas ESCRT-III was necessary to maintain translation levels in the MB. Our data suggest a model in which the MB functions as a novel RNA-based organelle with a uniquely complex life cycle. We present a model in which the assembly and transfer of RNP complexes are central to post-mitotic MBR function and suggest the MBR serves as a novel mode of RNA-based intercellular communication with a defined biogenesis that is coupled to abscission, and inherently links cell division status with signaling capacity. To our knowledge, this is the first example of an autonomous extracellular vesicle with active translation activity.
Retinal ganglion cell expression of cytokine enhances occupancy of NG2 cell-derived astrocytes at the nerve injury site: Implication for axon regeneration

Experimental neurology

2022 Jun 20

Ribeiro, M;Ayupe, AC;Beckedorff, FC;Levay, K;Rodriguez, S;Tsoulfas, P;Lee, JK;Nascimento-Dos-Santos, G;Park, KK;
PMID: 35738417 | DOI: 10.1016/j.expneurol.2022.114147

Following injury in the central nervous system, a population of astrocytes occupy the lesion site, form glial bridges and facilitate axon regeneration. These astrocytes originate primarily from resident astrocytes or NG2+ oligodendrocyte progenitor cells. However, the extent to which these cell types give rise to the lesion-filling astrocytes, and whether the astrocytes derived from different cell types contribute similarly to optic nerve regeneration remain unclear. Here we examine the distribution of astrocytes and NG2+ cells in an optic nerve crush model. We show that optic nerve astrocytes partially fill the injury site over time after a crush injury. Viral mediated expression of a growth-promoting factor, ciliary neurotrophic factor (CNTF), in retinal ganglion cells (RGCs) promotes axon regeneration without altering the lesion size or the degree of lesion-filling GFAP+ cells. Strikingly, using inducible NG2CreER driver mice, we found that CNTF overexpression in RGCs increases the occupancy of NG2+ cell-derived astrocytes in the optic nerve lesion. An EdU pulse-chase experiment shows that the increase in NG2 cell-derived astrocytes is not due to an increase in cell proliferation. Lastly, we performed RNA-sequencing on the injured optic nerve and reveal that CNTF overexpression in RGCs results in significant changes in the expression of distinct genes, including those that encode chemokines, growth factor receptors, and immune cell modulators. Even though CNTF-induced axon regeneration has long been recognized, this is the first evidence of this procedure affecting glial cell fate at the optic nerve crush site. We discuss possible implication of these results for axon regeneration.
ICAM-1-related noncoding RNA accelerates atherosclerosis by amplifying NF-κB signaling

Journal of molecular and cellular cardiology

2022 Jun 14

Ding, S;Liu, J;Han, X;Ding, W;Liu, Z;Zhu, Y;Zhan, W;Wan, Y;Gai, S;Hou, J;Wang, X;Wu, Y;Wu, A;Li, CY;Zheng, Z;Tian, XL;Cao, H;
PMID: 35714558 | DOI: 10.1016/j.yjmcc.2022.06.001

Long noncoding RNAs (lncRNAs) are critical regulators of inflammation with great potential as new therapeutic targets. However, the role of lncRNAs in early atherosclerosis remains poorly characterized. This study aimed to identify the key lncRNA players in activated endothelial cells (ECs). The lncRNAs in response to pro-inflammatory factors in ECs were screened through RNA sequencing. ICAM-1-related non-coding RNA (ICR) was identified as the most potential candidate for early atherosclerosis. ICR is essential for intercellular adhesion molecule-1 (ICAM1) expression, EC adhesion and migration. In a high fat diet-induced atherosclerosis model in mice, ICR is upregulated in the development of atherosclerosis. After intravenous injection of adenovirus carrying shRNA for mouse ICR, the atherosclerotic plaque area was markedly reduced with the declined expression of ICR and ICAM1. Mechanistically, ICR stabilized the mRNA of ICAM1 in quiescent ECs; while under inflammatory stress, ICR upregulated ICAM1 in a nuclear factor kappa B (NF-κB) dependent manner. RNA-seq analysis showed pro-inflammatory targets of NF-κB were regulated by ICR. Furthermore, the chromatin immunoprecipitation assays showed that p65 binds to ICR promoter and facilitates its transcription. Interestingly, ICR, in turn, promotes p65 accumulation and activity, forming a positive feedback loop to amplify NF-κB signaling. Preventing the degradation of p65 using proteasome inhibitors rescued the expression of NF-κB targets suppressed by ICR. Taken together, ICR acts as an accelerator to amplify NF-κB signaling in activated ECs and suppressing ICR is a promising early intervention for atherosclerosis through ICR/p65 loop blockade.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?