Pu, J;Li, W;Wang, A;Zhang, Y;Qin, Z;Xu, Z;Wang, J;Lu, Y;Tang, Q;Wei, H;
PMID: 34815380 | DOI: 10.1038/s41419-021-04309-z
The crosstalk between cancer cells and tumor microenvironment plays critical roles in hepatocellular carcinoma (HCC). The identification of long non-coding RNAs (lncRNAs) mediating the crosstalk might promote the development of new therapeutic strategies against HCC. Here, we identified a lncRNA, HOMER3-AS1, which is over-expressed in HCC and correlated with poor survival of HCC patients. HOMER3-AS1 promoted HCC cellular proliferation, migration, and invasion, and reduced HCC cellular apoptosis. Furthermore, HOMER3-AS1 promoted macrophages recruitment and M2-like polarization. In vivo, HOMER3-AS1 significantly facilitated HCC progression. Mechanism investigations revealed that HOMER3-AS1 activated Wnt/β-catenin signaling via upregulating HOMER3. Functional rescue experiments revealed that HOMER3/Wnt/β-catenin axis mediated the roles of HOMER3-AS1 in promoting HCC cellular malignant phenotypes. Furthermore, colony stimulating factor-1 (CSF-1) was also identified as a critical downstream target of HOMER3-AS1. HOMER3-AS1 increased CSF-1 expression and secretion. Blocking CSF-1 reversed the roles of HOMER3-AS1 in inducing macrophages recruitment and M2 polarization. Furthermore, positive correlations between HOMER3-AS1 and HOMER3 expression, HOMER3-AS1 and CSF-1 expression, and HOMER3-AS1 expression and M2-like macrophages infiltration were found in human HCC tissues. In summary, our findings demonstrated that HOMER3-AS1 drives HCC progression via modulating the behaviors of both tumor cells and macrophages, which are dependent on the activation of HOMER3/Wnt/β-catenin axis and CSF-1, respectively. HOMER3-AS1 might be a promising prognostic and therapeutic target for HCC.
Long noncoding RNA BS-DRL1 modulates the DNA damage response and genome stability by interacting with HMGB1 in neurons
Lou, MM;Tang, XQ;Wang, GM;He, J;Luo, F;Guan, MF;Wang, F;Zou, H;Wang, JY;Zhang, Q;Xu, MJ;Shi, QL;Shen, LB;Ma, GM;Wu, Y;Zhang, YY;Liang, AB;Wang, TH;Xiong, LL;Wang, J;Xu, J;Wang, WY;
PMID: 34210972 | DOI: 10.1038/s41467-021-24236-z
Long noncoding RNAs (lncRNAs) are known to regulate DNA damage response (DDR) and genome stability in proliferative cells. However, it remains unknown whether lncRNAs are involved in these vital biological processes in post-mitotic neurons. Here, we report and characterize a lncRNA, termed Brain Specific DNA-damage Related lncRNA1 (BS-DRL1), in the central nervous system. BS-DRL1 is a brain-specific lncRNA and depletion of BS-DRL1 in neurons leads to impaired DDR upon etoposide treatment in vitro. Mechanistically, BS-DRL1 interacts with HMGB1, a chromatin protein that is important for genome stability, and is essential for the assembly of HMGB1 on chromatin. BS-DRL1 mediated DDR exhibits cell-type specificity in the cortex and cerebellum in gamma-irradiated mice and BS-DRL1 knockout mice show impaired motor function and concomitant purkinje cell degeneration. Our study extends the understanding of lncRNAs in DDR and genome stability and implies a protective role of lncRNA against neurodegeneration.
Evidence-based complementary and alternative medicine : eCAM
Zhang, S;Song, S;Cui, W;Liu, X;Sun, Z;
PMID: 35027936 | DOI: 10.1155/2022/8504601
Intervertebral disc degeneration (IDD) contributes to cervical and lumbar diseases. Long noncoding RNAs (lncRNAs) are implicated in IDD. This study explored the mechanism of lncRNA HOTAIR in IDD.Normal and degenerative nucleus pulposus (NP) cells were isolated from NP tissues obtained in intervertebral disc surgery. Cell morphology was observed by immunocytochemistry staining and toluidine blue staining. NP cell markers were detected by RT-qPCR. Proliferation was detected by MTT assay. Autophagy-related proteins were detected by Western blot. Autophagosome was observed by monodansylcadaverine fluorescence staining. Apoptosis was detected by TUNEL staining and flow cytometry. si-HOTAIR and/or miR-148a inhibitor was introduced into degenerative NP cells. Binding relationships among HOTAIR, miR-148a, and PTEN were predicted and verified by dual-luciferase reporter assay and RNA pull-down. Finally, IDD rat models were established. Rat caudal intervertebral discs were assessed by HE staining. Expressions of HOTAIR, miR-148a, and PTEN were determined by RT-qPCR.HOTAIR was highly expressed in degenerative NP cells (p < 0.05). si-HOTAIR inhibited degenerative NP cell apoptosis and autophagy (p < 0.05). HOTAIR upregulated PTEN as a sponge of miR-148a. miR-148a was poorly expressed in degenerative NP cells. miR-148a deficiency partially reversed the inhibition of si-HOTAIR on degenerative NP cell autophagy and apoptosis (all p < 0.05). In vivo assay confirmed that si-HOTAIR impeded autophagy and apoptosis in intervertebral disc tissues, thus improving pathological injury in IDD rats (all p < 0.05).LncRNA HOTAIR promoted NP cell autophagy and apoptosis via promoting PTEN expression as a ceRNA of miR-148a in IDD.
Am J Respir Crit Care Med.
Savary G, Dewaeles E, Diazzi S, Buscot M, Nottet N, Fassy J, Courcot E, Henaoui IS, Lemaire J, Martis N, Van der Hauwaert C, Pons N, Magnone V, Leroy S, Hofman V, Plantier L, Lebrigand K, Paquet A, Lino Cardenas CL, Vassaux G, Hofman P, Günther A, Crestani B, Wallaert B, Rezzonico R, Brousseau T, Glowacki F, Bellusci S, Perrais M, Broly F, Barbry P, Marquette CH, Cauffiez C, Mari B, Pottier N.
PMID: 30964696 | DOI: 10.1164/rccm.201807-1237OC
Abstract
RATIONALE:
Given the paucity of effective treatments for Idiopathic Pulmonary Fibrosis (IPF), new insights into the deleterious mechanisms controlling lung fibroblast activation, the key cell type driving the fibrogenic process, are essential to develop new therapeutic strategies. Transforming growth factor β (TGF-β) is the main pro-fibrotic factor, but its inhibition is associated with severe side effects due to its pleiotropic role.
OBJECTIVES:
We hypothesized that downstream non-coding effectors of TGF-β in fibroblasts may represent new effective therapeutic targets whose modulation may be well-tolerated.
METHODS:
We investigated the whole non-coding fraction of TGF-β-stimulated lung fibroblast transcriptome to identify new genomic determinants of lung fibroblast differentiation into myofibroblast. Differential expression of the long non-coding RNA DNM3OS and its associated miRNAs was validated in a murine model of pulmonary fibrosis and in IPF tissue samples. Distinct and complementary antisense oligonucleotide-based strategies aiming at interfering with DNM3OS were used to elucidate the role of DNM3OS and its associated miRNAs in IPF pathogenesis.
MEASUREMENTS AND MAIN RESULTS:
We identified DNM3OS as a fibroblast-specific critical downstream effector of TGF-β-induced lung myofibroblast activation. Mechanistically, DNM3OS regulates this process in trans by giving rise to three distinct profibrotic mature miRNAs (i.e. miR-199a-5p/3p and miR-214-3p), which influence both SMAD and non-SMAD components of TGF-β signaling in a multifaceted way. In vivo, we showed that interfering with DNM3OS function not only prevents lung fibrosis but also improves established pulmonary fibrosis.
CONCLUSION:
Pharmacological approaches aiming at interfering with DNM3OS may represent new effective therapeutic strategies in IPF.
bioRxiv : the preprint server for biology
Zhang, W;Zhao, J;Deng, L;Ishimwe, N;Pauli, J;Wu, W;Shan, S;Kempf, W;Ballantyne, MD;Kim, D;Lyu, Q;Bennett, M;Rodor, J;Turner, AW;Lu, YW;Gao, P;Choi, M;Warthi, G;Kim, HW;Barroso, MM;Bryant, WB;Miller, CL;Weintraub, NL;Maegdefessel, L;Miano, JM;Baker, AH;Long, X;
PMID: 36711681 | DOI: 10.1101/2023.01.07.522948
Activation of vascular smooth muscle cells (VSMCs) inflammation is vital to initiate vascular disease. However, the role of human-specific long noncoding RNAs (lncRNAs) in VSMC inflammation is poorly understood.Bulk RNA-seq in differentiated human VSMCs revealed a novel human-specific lncRNA called IN flammatory M K L1 I nteracting L ong N oncoding RNA ( INKILN ). INKILN expression was assessed in multiple in vitro and ex vivo models of VSMC phenotypic modulation and human atherosclerosis and abdominal aortic aneurysm (AAA) samples. The transcriptional regulation of INKILN was determined through luciferase reporter system and chromatin immunoprecipitation assay. Both loss- and gain-of-function approaches and multiple RNA-protein and protein-protein interaction assays were utilized to uncover the role of INKILN in VSMC proinflammatory gene program and underlying mechanisms. Bacterial Artificial Chromosome (BAC) transgenic (Tg) mice were utilized to study INKLIN expression and function in ligation injury-induced neointimal formation.INKILN expression is downregulated in contractile VSMCs and induced by human atherosclerosis and abdominal aortic aneurysm. INKILN is transcriptionally activated by the p65 pathway, partially through a predicted NF-κB site within its proximal promoter. INKILN activates the proinflammatory gene expression in cultured human VSMCs and ex vivo cultured vessels. Mechanistically, INKILN physically interacts with and stabilizes MKL1, a key activator of VSMC inflammation through the p65/NF-κB pathway. INKILN depletion blocks ILIβ-induced nuclear localization of both p65 and MKL1. Knockdown of INKILN abolishes the physical interaction between p65 and MKL1, and the luciferase activity of an NF-κB reporter. Further, INKILN knockdown enhances MKL1 ubiquitination, likely through the reduced physical interaction with the deubiquitinating enzyme, USP10. INKILN is induced in injured carotid arteries and exacerbates ligation injury-induced neointimal formation in BAC Tg mice.These findings elucidate an important pathway of VSMC inflammation involving an INKILN /MKL1/USP10 regulatory axis. Human BAC Tg mice offer a novel and physiologically relevant approach for investigating human-specific lncRNAs under vascular disease conditions.
Nat Commun. 2018 Oct 22;9(1):4386.
Liu J, Li Y, Tong J, Gao J, Guo Q, Zhang L, Wang B, Zhao H, Wang H, Jiang E, Kurita R, Nakamura Y, Tanabe O, Engel JD, Bresnick EH, Zhou J, Shi L.
PMID: 30349036 | DOI: 10.1038/s41467-018-06883-x
In addition to serving as a prosthetic group for enzymes and a hemoglobin structural component, heme is a crucial homeostatic regulator of erythroid cell development and function. While lncRNAs modulate diverse physiological and pathological cellular processes, their involvement in heme-dependent mechanisms is largely unexplored. In this study, we elucidated a lncRNA (UCA1)-mediated mechanism that regulates heme metabolism in human erythroid cells. We discovered that UCA1 expression is dynamically regulated during human erythroid maturation, with a maximal expression in proerythroblasts. UCA1 depletion predominantly impairs heme biosynthesis and arrests erythroid differentiation at the proerythroblast stage. Mechanistic analysis revealed that UCA1 physically interacts with the RNA-binding protein PTBP1, and UCA1 functions as an RNA scaffold to recruit PTBP1 to ALAS2 mRNA, which stabilizes ALAS2 mRNA. These results define a lncRNA-mediated posttranscriptional mechanism that provides a new dimension into how the fundamental heme biosynthetic process is regulated as a determinant of erythrocyte development.
Wu X, Hu J, Li G, Li Y, Li Y, Zhang J, Wang F, Li A, Hu L, Fan Z, L� S, Ding G, Zhang C, Wang J, Long M, Wang S
PMID: 31830314 | DOI: 10.15252/embj.2019102374
Renewal of integumentary organs occurs cyclically throughout an organism's lifetime, but the mechanism that initiates each cycle remains largely unknown. In a miniature pig model of tooth development that resembles tooth development in humans, the permanent tooth did not begin transitioning from the resting to the initiation stage until the deciduous tooth began to erupt. This eruption released the accumulated mechanical stress inside the mandible. Mechanical stress prevented permanent tooth development by regulating expression and activity of the integrin ?1-ERK1-RUNX2 axis in the surrounding mesenchyme. We observed similar molecular expression patterns in human tooth germs. Importantly, the release of biomechanical stress induced downregulation of RUNX2-wingless/integrated (Wnt) signaling in the mesenchyme between the deciduous and permanent tooth and upregulation of Wnt signaling in the epithelium of the permanent tooth, triggering initiation of its development. Consequently, our findings identified biomechanical stress-associated Wnt modulation as a critical initiator of organ renewal, possibly shedding light on the mechanisms of integumentary organ regeneration.
Fan, C;González-Prieto, R;Kuipers, TB;Vertegaal, ACO;van Veelen, PA;Mei, H;Ten Dijke, P;
PMID: 37339182 | DOI: 10.1126/scisignal.adf1947
Transforming growth factor-β (TGF-β) signaling is a critical driver of epithelial-to-mesenchymal transition (EMT) and cancer progression. In SMAD-dependent TGF-β signaling, activation of the TGF-β receptor complex stimulates the phosphorylation of the intracellular receptor-associated SMADs (SMAD2 and SMAD3), which translocate to the nucleus to promote target gene expression. SMAD7 inhibits signaling through the pathway by promoting the polyubiquitination of the TGF-β type I receptor (TβRI). We identified an unannotated nuclear long noncoding RNA (lncRNA) that we designated LETS1 (lncRNA enforcing TGF-β signaling 1) that was not only increased but also perpetuated by TGF-β signaling. Loss of LETS1 attenuated TGF-β-induced EMT and migration in breast and lung cancer cells in vitro and extravasation of the cells in a zebrafish xenograft model. LETS1 potentiated TGF-β-SMAD signaling by stabilizing cell surface TβRI, thereby forming a positive feedback loop. Specifically, LETS1 inhibited TβRI polyubiquitination by binding to nuclear factor of activated T cells (NFAT5) and inducing the expression of the gene encoding the orphan nuclear receptor 4A1 (NR4A1), a component of a destruction complex for SMAD7. Overall, our findings characterize LETS1 as an EMT-promoting lncRNA that potentiates signaling through TGF-β receptor complexes.
Li, L;Sun, Y;Davis, AE;Shah, SH;Hamed, LK;Wu, MR;Lin, CH;Ding, JB;Wang, S;
PMID: 37269288 | DOI: 10.1016/j.celrep.2023.112596
Neural progenitor cells lengthen their cell cycle to prime themselves for differentiation as development proceeds. It is currently not clear how they counter this lengthening and avoid being halted in the cell cycle. We show that N6-methyladenosine (m6A) methylation of cell-cycle-related mRNAs ensures the proper cell-cycle progression of late-born retinal progenitor cells (RPCs), which are born toward the end of retinogenesis and have long cell-cycle length. Conditional deletion of Mettl14, which is required for depositing m6A, led to delayed cell-cycle exit of late-born RPCs but has no effect on retinal development prior to birth. m6A sequencing and single-cell transcriptomics revealed that mRNAs involved in elongating the cell cycle were highly enriched for m6A, which could target them for degradation and guarantee proper cell-cycle progression. In addition, we identified Zfp292 as a target of m6A and potent inhibitor of RPC cell-cycle progression.
Liu, YV;Santiago, CP;Sogunro, A;Konar, GJ;Hu, MW;McNally, MM;Lu, YC;Flores-Bellver, M;Aparicio-Domingo, S;Li, KV;Li, ZL;Agakishiev, D;Hadyniak, SE;Hussey, KA;Creamer, TJ;Orzolek, LD;Teng, D;Canto-Soler, MV;Qian, J;Jiang, Z;Johnston, RJ;Blackshaw, S;Singh, MS;
PMID: 37163980 | DOI: 10.1016/j.stemcr.2023.04.004
Human retinal organoid transplantation could potentially be a treatment for degenerative retinal diseases. How the recipient retina regulates the survival, maturation, and proliferation of transplanted organoid cells is unknown. We transplanted human retinal organoid-derived cells into photoreceptor-deficient mice and conducted histology and single-cell RNA sequencing alongside time-matched cultured retinal organoids. Unexpectedly, we observed human cells that migrated into all recipient retinal layers and traveled long distances. Using an unbiased approach, we identified these cells as astrocytes and brain/spinal cord-like neural precursors that were absent or rare in stage-matched cultured organoids. In contrast, retinal progenitor-derived rods and cones remained in the subretinal space, maturing more rapidly than those in the cultured controls. These data suggest that recipient microenvironment promotes the maturation of transplanted photoreceptors while inducing or facilitating the survival of migratory cell populations that are not normally derived from retinal progenitors. These findings have important implications for potential cell-based treatments of retinal diseases.
Pancani, T;Day, M;Tkatch, T;Wokosin, DL;González-Rodríguez, P;Kondapalli, J;Xie, Z;Chen, Y;Beaumont, V;Surmeier, DJ;
PMID: 36914640 | DOI: 10.1038/s41467-023-36556-3
Huntington's disease (HD) is a progressive, neurodegenerative disease caused by a CAG triplet expansion in huntingtin. Although corticostriatal dysfunction has long been implicated in HD, the determinants and pathway specificity of this pathophysiology are not fully understood. Here, using a male zQ175+/- knock-in mouse model of HD we carry out optogenetic interrogation of intratelencephalic and pyramidal tract synapses with principal striatal spiny projection neurons (SPNs). These studies reveal that the connectivity of intratelencephalic, but not pyramidal tract, neurons with direct and indirect pathway SPNs increased in early symptomatic zQ175+/- HD mice. This enhancement was attributable to reduced pre-synaptic inhibitory control of intratelencephalic terminals by striatal cholinergic interneurons. Lowering mutant huntingtin selectively in striatal cholinergic interneurons with a virally-delivered zinc finger repressor protein normalized striatal acetylcholine release and intratelencephalic functional connectivity, revealing a node in the network underlying corticostriatal pathophysiology in a HD mouse model.
Krawczyk, MC;Pan, L;Zhang, AJ;Zhang, Y;
PMID: 36827449 | DOI: 10.1371/journal.pone.0279736
Though the brain was long characterized as an immune-privileged organ, findings in recent years have shown extensive communications between the brain and peripheral immune cells. We now know that alterations in the peripheral immune system can affect the behavioral outputs of the central nervous system, but we do not know which brain cells are affected by the presence of peripheral immune cells. Glial cells including microglia, astrocytes, oligodendrocytes, and oligodendrocyte precursor cells (OPCs) are critical for the development and function of the central nervous system. In a wide range of neurological and psychiatric diseases, the glial cell state is influenced by infiltrating peripheral lymphocytes. However, it remains largely unclear whether the development of the molecular phenotypes of glial cells in the healthy brain is regulated by lymphocytes. To answer this question, we acutely purified each type of glial cell from immunodeficient Rag2-/- mice. Interestingly, we found that the transcriptomes of microglia, astrocytes, and OPCs developed normally in Rag2-/- mice without reliance on lymphocytes. In contrast, there are modest transcriptome differences between the oligodendrocytes from Rag2-/- and control mice. Furthermore, the subcellular localization of the RNA-binding protein Quaking, is altered in oligodendrocytes. These results demonstrate that the molecular attributes of glial cells develop largely without influence from lymphocytes and highlight potential interactions between lymphocytes and oligodendrocytes.