Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INSULIN

ACD can configure probes for the various manual and automated assays for INSULIN for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for Insulin (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (104)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (14) Apply TBD filter
  • GCG (8) Apply GCG filter
  • Insr (6) Apply Insr filter
  • AGRP (5) Apply AGRP filter
  • Pomc (5) Apply Pomc filter
  • LEPR (4) Apply LEPR filter
  • Ins2 (4) Apply Ins2 filter
  • INS (3) Apply INS filter
  • Npy (3) Apply Npy filter
  • tdTomato (3) Apply tdTomato filter
  • AR (2) Apply AR filter
  • GDF15 (2) Apply GDF15 filter
  • GLP1R (2) Apply GLP1R filter
  • Sst (2) Apply Sst filter
  • TXNIP (2) Apply TXNIP filter
  • CHRM3 (2) Apply CHRM3 filter
  • Vegfb (2) Apply Vegfb filter
  • Ghsr (2) Apply Ghsr filter
  • Ugcg (2) Apply Ugcg filter
  • vGlut2 (2) Apply vGlut2 filter
  • VGAT (2) Apply VGAT filter
  • GLP-1R (2) Apply GLP-1R filter
  • insulin (2) Apply insulin filter
  • ALB (1) Apply ALB filter
  • Gad1 (1) Apply Gad1 filter
  • egfp (1) Apply egfp filter
  • Rbfox3 (1) Apply Rbfox3 filter
  • CD68 (1) Apply CD68 filter
  • CCL5 (1) Apply CCL5 filter
  • SLC30A8 (1) Apply SLC30A8 filter
  • CHGA (1) Apply CHGA filter
  • Ptger4 (1) Apply Ptger4 filter
  • Mc4r (1) Apply Mc4r filter
  • DDIT3 (1) Apply DDIT3 filter
  • EGFR (1) Apply EGFR filter
  • Gfral (1) Apply Gfral filter
  • FFAR1 (1) Apply FFAR1 filter
  • FOS (1) Apply FOS filter
  • FTL (1) Apply FTL filter
  • GFAP (1) Apply GFAP filter
  • GPR119 (1) Apply GPR119 filter
  • GUCA2A (1) Apply GUCA2A filter
  • GUCA2B (1) Apply GUCA2B filter
  • SLC32A1 (1) Apply SLC32A1 filter
  • HOTAIR (1) Apply HOTAIR filter
  • IGFBP7 (1) Apply IGFBP7 filter
  • GPR142 (1) Apply GPR142 filter
  • Tpbpa (1) Apply Tpbpa filter
  • Tph2 (1) Apply Tph2 filter
  • PDGFRA (1) Apply PDGFRA filter

Product

  • RNAscope Fluorescent Multiplex Assay (21) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent Assay (21) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.0 Assay (10) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Red assay (8) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope (7) Apply RNAscope filter
  • RNAscope 2.5 HD Brown Assay (4) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (3) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • Basescope (2) Apply Basescope filter
  • RNAscope 2.5 VS Assay (2) Apply RNAscope 2.5 VS Assay filter
  • BASEscope Assay RED (1) Apply BASEscope Assay RED filter
  • BaseScope Duplex Assay (1) Apply BaseScope Duplex Assay filter
  • RNAscope 2.5 HD Duplex (1) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter
  • TBD (1) Apply TBD filter

Research area

  • Neuroscience (24) Apply Neuroscience filter
  • diabetes (20) Apply diabetes filter
  • Metabolism (20) Apply Metabolism filter
  • Other (18) Apply Other filter
  • Obesity (11) Apply Obesity filter
  • Other: Metabolism (8) Apply Other: Metabolism filter
  • Inflammation (7) Apply Inflammation filter
  • Cancer (4) Apply Cancer filter
  • Other: Endocrinology (4) Apply Other: Endocrinology filter
  • Development (3) Apply Development filter
  • lncRNA (3) Apply lncRNA filter
  • Covid (2) Apply Covid filter
  • Insulin (2) Apply Insulin filter
  • Alzheimer's Disease (1) Apply Alzheimer's Disease filter
  • B cell Failure (1) Apply B cell Failure filter
  • Cell Biology (1) Apply Cell Biology filter
  • Circadian Rhythms (1) Apply Circadian Rhythms filter
  • Developmental (1) Apply Developmental filter
  • Diet (1) Apply Diet filter
  • Endrocrinoloogy (1) Apply Endrocrinoloogy filter
  • Eyes (1) Apply Eyes filter
  • Feeding Behavior (1) Apply Feeding Behavior filter
  • Healing (1) Apply Healing filter
  • hypothalamic regulation of glucose (1) Apply hypothalamic regulation of glucose filter
  • Infectious (1) Apply Infectious filter
  • Long Covid (1) Apply Long Covid filter
  • mRNA Therapy (1) Apply mRNA Therapy filter
  • Other: Ca2+-regulated gene expression (1) Apply Other: Ca2+-regulated gene expression filter
  • Other: Skin (1) Apply Other: Skin filter
  • Pain (1) Apply Pain filter
  • polycystic ovarian syndrome (1) Apply polycystic ovarian syndrome filter
  • Reproductive Biology (1) Apply Reproductive Biology filter
  • Reproductive Health (1) Apply Reproductive Health filter
  • Weight Loss (1) Apply Weight Loss filter

Category

  • (-) Remove Publications filter Publications (104)
Redundant functions of I-BAR family members, IRSp53 and IRTKS, are essential for embryonic development

Scientific Reports

2017 Jan 09

Chou AM, Sem KP, Lam WJ, Ahmed S, Lim CY.
PMID: 28067313 | DOI: 10.1038/srep40485

The insulin receptor substrate of 53 kDa, IRSp53, is an adaptor protein that works with activated GTPases, Cdc42 and Rac, to modulate actin dynamics and generate membrane protrusions in response to cell signaling. Adult mice that lack IRSp53 fail to regulate synaptic plasticity and exhibit hippocampus-associated learning deficiencies. Here, we show that 60% of IRSp53 null embryos die at mid to late gestation, indicating a vital IRSp53 function in embryonic development. We find that IRSp53 KO embryos displayed pleiotropic phenotypes such as developmental delay, oligodactyly and subcutaneous edema, and died of severely impaired cardiac and placental development. We further show that double knockout of IRSp53 and its closest family member, IRTKS, resulted in exacerbated placental abnormalities, particularly in spongiotrophoblast differentiation and development, giving rise to complete embryonic lethality. Hence, our findings demonstrate a hitherto under-appreciated IRSp53 function in embryonic development, and further establish an essential genetic interaction between IRSp53 and IRTKS in placental formation.

Reducing VEGF-B Signaling Ameliorates Renal Lipotoxicity and Protects against Diabetic Kidney Disease.

Cell Metab.

2017 Feb 01

Falkevall A, Mehlem A, Palombo I, Heller Sahlgren B, Ebarasi L, He L, Ytterberg AJ, Olauson H, Axelsson J, Sundelin B, Patrakka J, Scotney P, Nash A, Eriksson U.
PMID: 28190774 | DOI: 10.1016/j.cmet.2017.01.004

Diabetic kidney disease (DKD) is the most common cause of severe renal disease, and few treatment options are available today that prevent the progressive loss of renal function. DKD is characterized by altered glomerular filtration and proteinuria. A common observation in DKD is the presence of renal steatosis, but the mechanism(s) underlying this observation and to what extent they contribute to disease progression are unknown. Vascular endothelial growth factor B (VEGF-B) controls muscle lipid accumulation through regulation of endothelial fatty acid transport. Here, we demonstrate in experimental mouse models of DKD that renal VEGF-B expression correlates with the severity of disease. Inhibiting VEGF-B signaling in DKD mouse models reduces renal lipotoxicity, re-sensitizes podocytes to insulin signaling, inhibits the development of DKD-associated pathologies, and prevents renal dysfunction. Further, we show that elevated VEGF-B levels are found in patients with DKD, suggesting that VEGF-B antagonism represents a novel approach to treat DKD.

Indirect presentation in the thymus limits naïve and regulatory T cell differentiation by promoting deletion of self-reactive thymocytes

Immunology.

2018 Feb 07

Yap JY, Wirasinha RC, Chan A, Howard DR, Goodnow CC, Daley SR.
PMID: 29411880 | DOI: 10.1111/imm.12904

Acquisition of T cell central tolerance involves distinct pathways of self-antigen presentation to thymocytes. One pathway termed indirect presentation requires a self-antigen transfer step from thymic epithelial cells (TECs) to bone marrow (BM)-derived cells before the self-antigen is presented to thymocytes. The role of indirect presentation in central tolerance is context-dependent, potentially due to variation in self-antigen expression, processing and presentation in the thymus. Here, we report experiments in mice in which TECs expressed a membrane-bound transgenic self-antigen, hen egg lysozyme (HEL), from either the insulin (insHEL) or thyroglobulin (thyroHEL) promoter. Intrathymic HEL expression was less abundant and more confined to the medulla in insHEL mice compared to thyroHEL mice. When indirect presentation was impaired by generating mice lacking MHCII expression in BM-APCs, insHEL-mediated thymocyte deletion was abolished, whereas thyroHEL-mediated deletion occurred at a later stage of thymocyte development and Foxp3+ T-regulatory cell differentiation increased. Indirect presentation increased the strength of TCR signalling that both self-antigens induced in thymocytes, as assessed by Helios expression. Thus, indirect presentation limits the differentiation of naïve and regulatory T cells by promoting deletion of self-reactive thymocytes.

Gene Signature of Proliferating Human Pancreatic α-Cells.

Endocrinology.

2018 Jul 11

Dominguez Gutierrez G, Xin Y, Okamoto H, Kim J, Lee AH, Ni M, Adler C, Yancopoulos GD, Murphy AJ, Gromada J.
PMID: 30010845 | DOI: 10.1210/en.2018-00469

Pancreatic α-cells proliferate with low rate and little is known about the control of this process. Here we report the characterization of human α-cells by large-scale single cell RNA sequencing coupled with pseudotime ordering. We identified two large subpopulations and a smaller cluster of proliferating α-cells with increased expression of genes involved in cell cycle regulation. The proliferating α-cells were differentiated, had normal levels of GCG expression and showed no signs of cellular stress. Proliferating α-cells were detected in both the G1S and G2M phases of the cell cycle. Human α-cells proliferate with 5-fold higher rate than human β-cells and express lower levels of the cell cycle inhibitors CDKN1A and CDKN1C. Collectively, this study provides the gene signatures of human α-cells and the genes involved in their cell division. The lower expression of two cell cycle inhibitors in human α-cells could account for their higher rate of proliferation compared to their insulin producing counterparts.

Proteomic Analysis of Charcoal-Stripped Fetal Bovine Serum Reveals Changes in the Insulin-Like Growth Factor Signaling Pathway.

J Proteome Res.

2018 Jul 17

Tu C, Fiandalo MV, Pop E, Stocking JJ, Azabdaftari G, Li J, Wei H, Ma D, Qu J, Mohler JL, Tang L, Wu Y.
PMID: 30014700 | DOI: 10.1021/acs.jproteome.8b00135

Fetal bovine serum (FBS) is used commonly in cell culture. Charcoal-stripped FBS (CS-FBS) is used to study androgen responsiveness and androgen metabolism in cultured CaP cells. Switching CaP cells from FBS to CS-FBS may reduce activity of androgen receptor (AR), inhibit cell proliferation, or modulate intracellular androgen metabolism. Removal of proteins by charcoal stripping may cause changes in biological functions. Proteins in FBS and CS-FBS were profiled using an ion current-based quantitative platform consisting of reproducible surfactant-aided precipitation/on-pellet digestion, long-column nano-liquid chromatography (LC) separation, and ion current-based analysis (ICan). A total of 143 proteins were identified in FBS, among which 14 proteins including insulin-like growth factor 2 (IGF-2) and IGF binding protein (IGFBP)-2 and -6 were reduced in CS-FBS. IGF1 receptor (IGF1R) and insulin receptor (IR) were sensitized to IGFs in CS-FBS. IGF1 and IGF2 stimulation fully compensated for the loss of AR activity to maintain cell growth in CS-FBS. Endogenous production of IGF and IGFBPs was verified in CaP cells and clinical CaP specimens. This study provided the most comprehensive protein profiles of FBS and CS-FBS, and offered an opportunity to identify new protein regulators and signaling pathways that regulate AR activity, androgen metabolism and proliferation of CaP cells.

Mild Impairment of Mitochondrial OXPHOS Promotes Fatty Acid Utilization in POMC Neurons and Improves Glucose Homeostasis in Obesity.

Cell Rep.

2018 Oct 09

Timper K, Paeger L, Sánchez-Lasheras C, Varela L, Jais A, Nolte H, Vogt MC, Hausen AC, Heilinger C, Evers N, Pospisilik JA, Penninger JM, Taylor EB, Horvath TL, Kloppenburg P, Brüning JC.
PMID: 30304679 | DOI: 10.1016/j.celrep.2018.09.034

Mitochondrial oxidative phosphorylation (OXPHOS) and substrate utilization critically regulate the function of hypothalamic proopiomelanocortin (POMC)-expressing neurons. Here, we demonstrate that inactivation of apoptosis-inducing factor (AIF) in POMC neurons mildly impairs mitochondrial respiration and decreases firing of POMC neurons in lean mice. In contrast, under diet-induced obese conditions, POMC-Cre-specific inactivation of AIF prevents obesity-induced silencing of POMC neurons, translating into improved glucose metabolism, improved leptin, and insulin sensitivity, as well as increased energy expenditure in AIFΔPOMC mice. On a cellular level, AIF deficiency improves mitochondrial morphology, facilitates the utilization of fatty acids for mitochondrial respiration, and increases reactive oxygen species (ROS) formation in POMC neurons from obese mice, ultimately leading to restored POMC firing upon HFD feeding. Collectively, partial impairment of mitochondrial function shifts substrate utilization of POMC neurons from glucose to fatty acid metabolism and restores their firing properties, resulting in improved systemic glucose and energy metabolism in obesity.

The Microbiota-Produced N-Formyl Peptide fMLF Promotes Obesity-Induced Glucose Intolerance.

Diabetes

2019 Apr 22

Wollam J, Riopel M, Xu YJ, Johnson AMF, Ofrecio JM, Ying W, El Ouarrat D, Chan LS, Han AW, Mahmood NA, Ryan CN, Lee YS, Watrous JD, Chordia MD, Pan D, Jain M, Olefsky JM.
PMID: 31010956 | DOI: 10.2337/db18-1307

The composition of the gastrointestinal (GI) microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine (fMLF), are elevated in high fat diet (HFD)-induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon-like peptide-1 (GLP-1). Obese Fpr1-knockout (Fpr1-KO) mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota. Overall, we describe a new mechanism by which the gut microbiota can modulate glucose metabolism, providing a potential approach for treatment of metabolic disease.

Amygdala NPY Circuits Promote the Development of Accelerated Obesity under Chronic Stress Conditions.

Cell Metab.

2019 Apr 22

Ip CK, Zhang L, Farzi A, Qi Y, Clarke I, Reed F, Shi YC, Enriquez R, Dayas C, Graham B, Begg D, Brüning JC, Lee NJ, Hernandez-Sanchez D, Gopalasingam G, Koller J, Tasan R, Sperk G, Herzog H.
PMID: 31031093 | DOI: 10.1016/j.cmet.2019.04.001

Neuropeptide Y (NPY) exerts a powerful orexigenic effect in the hypothalamus. However, extra-hypothalamic nuclei also produce NPY, but its influence on energy homeostasis is unclear. Here we uncover a previously unknown feeding stimulatory pathway that is activated under conditions of stress in combination with calorie-dense food; NPY neurons in the central amygdala are responsible for an exacerbated response to a combined stress and high-fat-diet intervention. Central amygdala NPY neuron-specific Npy overexpression mimics the obese phenotype seen in a combined stress and high-fat-diet model, which is prevented by the selective ablation of Npy. Using food intake and energy expenditure as readouts, we demonstrate that selective activation of central amygdala NPY neurons results in increased food intake and decreased energy expenditure. Mechanistically, it is the diminished insulin signaling capacity on central amygdala NPY neurons under combined stress and high-fat-diet conditions that leads to the exaggerated development of obesity.

Insulin-like growth factor receptor / mTOR signaling elevates global translation to accelerate zebrafish fin regenerative outgrowth

Developmental biology

2023 Jun 06

Lewis, VM;Le Bleu, HK;Henner, AL;Markovic, H;Robbins, AE;Stewart, S;Stankunas, K;
PMID: 37290497 | DOI: 10.1016/j.ydbio.2023.05.008

Zebrafish robustly regenerate fins, including their characteristic bony ray skeleton. Amputation activates intra-ray fibroblasts and dedifferentiates osteoblasts that migrate under a wound epidermis to establish an organized blastema. Coordinated proliferation and re-differentiation across lineages then sustains progressive outgrowth. We generate a single cell transcriptome dataset to characterize regenerative outgrowth and explore coordinated cell behaviors. We computationally identify sub-clusters representing most regenerative fin cell lineages, and define markers of osteoblasts, intra- and inter-ray fibroblasts and growth-promoting distal blastema cells. A pseudotemporal trajectory and in vivo photoconvertible lineage tracing indicate distal blastemal mesenchyme restores both intra- and inter-ray fibroblasts. Gene expression profiles across this trajectory suggest elevated protein production in the blastemal mesenchyme state. O-propargyl-puromycin incorporation and small molecule inhibition identify insulin growth factor receptor (IGFR)/mechanistic target of rapamycin kinase (mTOR)-dependent elevated bulk translation in blastemal mesenchyme and differentiating osteoblasts. We test candidate cooperating differentiation factors identified from the osteoblast trajectory, finding IGFR/mTOR signaling expedites glucocorticoid-promoted osteoblast differentiation in vitro. Concordantly, mTOR inhibition slows but does not prevent fin regenerative outgrowth in vivo. IGFR/mTOR may elevate translation in both fibroblast- and osteoblast-lineage cells during the outgrowth phase as a tempo-coordinating rheostat.
Deletion of androgen receptors from kisspeptin neurons prevents PCOS features in a letrozole mouse model

Endocrinology

2023 May 16

Decourt, C;Watanabe, Y;Evans, MC;Inglis, MA;Fisher, LC;Jasoni, CL;Campbell, RE;Anderson, GM;
PMID: 37191144 | DOI: 10.1210/endocr/bqad077

Polycystic ovarian syndrome (PCOS) is the leading cause of anovulatory infertility and is a heterogenous condition associated with a range of reproductive and metabolic impairments. While its etiology remains unclear, hyperandrogenism and impaired steroid negative feedback have been identified as key factors underpinning the development of PCOS-like features both clinically and in animal models. We tested the hypothesis that androgen signaling in kisspeptin-expressing neurons, which are key drivers of the neuroendocrine reproductive axis, is critically involved in PCOS pathogenesis. To this end, we used a previously validated letrozole (LET)-induced hyperandrogenic mouse model of PCOS in conjunction with Cre-lox technology to generate female mice exhibiting kisspeptin-specific deletion of androgen receptor (KARKO mice) to test whether LET-treated KARKO females are protected from the development of reproductive and metabolic PCOS-like features. LET-treated mice exhibited hyperandrogenism, and KARKO mice exhibited a significant reduction in the coexpression of kisspeptin and androgen receptor mRNA compared to controls. In support of our hypothesis, LET-treated KARKO mice exhibited improved estrous cyclicity, ovarian morphology, and insulin sensitivity in comparison to LET-treated control females. However, KARKO mice were not fully protected from the effects of LET-induced hyperandrogenism and still exhibited reduced corpora lutea numbers and increased body weight gain. These data indicate that increased androgen signaling in kisspeptin-expressing neurons plays a critical role in PCOS pathogenesis, but highlight that other mechanisms are also involved.
Mice deficient for G-protein-coupled receptor 75 display altered presynaptic structural protein expression and disrupted fear conditioning recall

Journal of neurochemistry

2023 Mar 28

Speidell, A;Walton, S;Campbell, LA;Tomassoni-Ardori, F;Tessarollo, L;Corbo, C;Taraballi, F;Mocchetti, I;
PMID: 36978267 | DOI: 10.1111/jnc.15818

There are a number of G-protein-coupled receptors (GPCRs) that are considered "orphan receptors" because the information on their known ligands is incomplete. Yet, these receptors are important targets to characterize, as the discovery of their ligands may lead to potential new therapies. GPR75 was recently deorphanized because at least two ligands appear to bind to it, the chemokine CCL5 and the eicosanoid 20-Hydroxyeicosatetraenoic acid. Recent reports suggest that GPR75 may play a role in regulating insulin secretion and obesity. However, little is known about the function of this receptor in the brain. To study the function of GPR75, we have generated a knockout (KO) mouse model of this receptor and we evaluated the role that this receptor plays in the adult hippocampus by an array of histological, proteomic, and behavioral endpoints. Using RNAscope technology, we identified GPR75 puncta in several Rbfox3-/NeuN-positive cells in the hippocampus, suggesting that this receptor has a neuronal expression. Proteomic analysis of the hippocampus in 3-month-old GPR75 KO animals revealed that several markers of synapses, including synapsin I and II are downregulated compared with wild type (WT). To examine the functional consequence of this down-regulation, WT and GPR75 KO mice were tested on a hippocampal-dependent behavioral task. Both contextual memory and anxiety-like behaviors were significantly altered in GPR75 KO, suggesting that GPR75 plays a role in hippocampal activity.
Schwann cell insulin-like growth factor receptor type-1 mediates metastatic bone cancer pain in mice

Brain, behavior, and immunity

2023 Mar 20

Landini, L;Marini, M;Souza Monteiro de Araujo, D;Romitelli, A;Montini, M;Albanese, V;Titiz, M;Innocenti, A;Bianchini, F;Geppetti, P;Nassini, R;De Logu, F;
PMID: 36940752 | DOI: 10.1016/j.bbi.2023.03.013

Insulin growth factor-1 (IGF-1), an osteoclast-dependent osteolysis biomarker, contributes to metastatic bone cancer pain (MBCP), but the underlying mechanism is poorly understood. In mice, the femur metastasis caused by intramammary inoculation of breast cancer cells resulted in IGF-1 increase in femur and sciatic nerve, and IGF-1-dependent stimulus/non-stimulus-evoked pain-like behaviors. Adeno-associated virus-based shRNA selective silencing of IGF-1 receptor (IGF-1R) in Schwann cells, but not in dorsal root ganglion (DRG) neurons, attenuated pain-like behaviors. Intraplantar IGF-1 evoked acute nociception and mechanical/cold allodynia, which were reduced by selective IGF-1R silencing in DRG neurons and Schwann cells, respectively. Schwann cell IGF-1R signaling promoted an endothelial nitric oxide synthase-mediated transient receptor potential ankyrin 1 (TRPA1) activation and release of reactive oxygen species that, via macrophage-colony stimulating factor-dependent endoneurial macrophage expansion, sustained pain-like behaviors. Osteoclast derived IGF-1 initiates a Schwann cell-dependent neuroinflammatory response that sustains a proalgesic pathway that provides new options for MBCP treatment.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?