Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INSULIN

ACD can configure probes for the various manual and automated assays for INSULIN for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for Insulin (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (20)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • GCG (2) Apply GCG filter
  • AGRP (2) Apply AGRP filter
  • Pomc (2) Apply Pomc filter
  • Insr (1) Apply Insr filter
  • egfp (1) Apply egfp filter
  • CD68 (1) Apply CD68 filter
  • Ptger4 (1) Apply Ptger4 filter
  • EGFR (1) Apply EGFR filter
  • Gfral (1) Apply Gfral filter
  • GDF15 (1) Apply GDF15 filter
  • GLP1R (1) Apply GLP1R filter
  • SLC32A1 (1) Apply SLC32A1 filter
  • Tph2 (1) Apply Tph2 filter
  • LEPR (1) Apply LEPR filter
  • TXNIP (1) Apply TXNIP filter
  • Npy1r (1) Apply Npy1r filter
  • Chat (1) Apply Chat filter
  • Slc17a6 (1) Apply Slc17a6 filter
  • Ins2 (1) Apply Ins2 filter
  • Npffr2 (1) Apply Npffr2 filter
  • Npy2r (1) Apply Npy2r filter
  • Nts (1) Apply Nts filter
  • Npy4r (1) Apply Npy4r filter
  • Fgf21 (1) Apply Fgf21 filter
  • Vegfb (1) Apply Vegfb filter
  • Ghsr (1) Apply Ghsr filter
  • tdTomato (1) Apply tdTomato filter
  • Npff (1) Apply Npff filter
  • Scgn (1) Apply Scgn filter
  • Pcsk2 (1) Apply Pcsk2 filter
  • vGluT3 (1) Apply vGluT3 filter
  • IL1β (1) Apply IL1β filter
  • GRB10 (1) Apply GRB10 filter
  • ASIC1a (1) Apply ASIC1a filter
  • Sert (1) Apply Sert filter
  • Reg1  (1) Apply Reg1  filter
  • tdTomate (1) Apply tdTomate filter
  • miR-9-3p (1) Apply miR-9-3p filter
  • Insulin receptor (1) Apply Insulin receptor filter
  •  Fgf11 (1) Apply  Fgf11 filter
  • Npy  (1) Apply Npy  filter
  • GPR120 (1) Apply GPR120 filter
  • Orexin (1) Apply Orexin filter
  • Gm15441-L (1) Apply Gm15441-L filter
  • Ox1R (1) Apply Ox1R filter
  • Ox2R (1) Apply Ox2R filter
  • Pet1 (1) Apply Pet1 filter
  • LepR variant 1 (1) Apply LepR variant 1 filter
  • LepR variant 3 (1) Apply LepR variant 3 filter
  • IR-B (1) Apply IR-B filter

Product

  • RNAscope Multiplex Fluorescent Assay (7) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope Fluorescent Multiplex Assay (3) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope (2) Apply RNAscope filter
  • Basescope (1) Apply Basescope filter
  • BASEscope Assay RED (1) Apply BASEscope Assay RED filter
  • RNAscope 2.0 Assay (1) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (1) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.5 HD Red assay (1) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter

Research area

  • (-) Remove Metabolism filter Metabolism (20)
  • Obesity (6) Apply Obesity filter
  • Neuroscience (5) Apply Neuroscience filter
  • diabetes (4) Apply diabetes filter
  • Inflammation (2) Apply Inflammation filter
  • B cell Failure (1) Apply B cell Failure filter
  • Circadian Rhythms (1) Apply Circadian Rhythms filter
  • Development (1) Apply Development filter
  • Diet (1) Apply Diet filter
  • Endrocrinoloogy (1) Apply Endrocrinoloogy filter
  • Eyes (1) Apply Eyes filter
  • Insulin (1) Apply Insulin filter
  • lncRNA (1) Apply lncRNA filter
  • Other: Endocrinology (1) Apply Other: Endocrinology filter
  • Weight Loss (1) Apply Weight Loss filter

Category

  • (-) Remove Publications filter Publications (20)
Insulin increases sensory nerve density and reflex bronchoconstriction in obese mice

JCI insight

2022 Sep 15

Calco, GN;Maung, JN;Jacoby, DB;Fryer, AD;Nie, Z;
PMID: 36107629 | DOI: 10.1172/jci.insight.161898

Obesity-induced asthma responds poorly to all current pharmacological interventions, including steroids; suggesting that classic, eosinophilic inflammation is not a mechanism. As insulin resistance and hyperinsulinemia are common in obese individuals and associated with increased risk of asthma, we used diet-induced obese mice to study how insulin induces airway hyperreactivity. Inhaled 5-HT or methacholine induced dose dependent bronchoconstriction that was significantly potentiated in obese mice. Cutting the vagus nerves eliminated bronchoconstriction in both obese and non-obese animals indicating it was mediated by a neural reflex. There was significantly greater density of airway sensory nerves in obese than in non-obese mice. Deleting insulin receptors on sensory nerves prevented the increase in sensory nerve density and prevented airway hyperreactivity in obese mice with hyperinsulinemia. Our data demonstrate that high levels of insulin drives obesity-induced airway hyperreactivity by increasing sensory innervation of the lung. Therefore, pharmacological interventions to control metabolic syndrome and limit reflex-mediated bronchoconstriction may be a more effective approach to reduce asthma exacerbations in obese and asthmatic patients.
Phagocytosis in the retina promotes local insulin production in the eye

Nature metabolism

2023 Feb 01

Iker Etchegaray, J;Kelley, S;Penberthy, K;Karvelyte, L;Nagasaka, Y;Gasperino, S;Paul, S;Seshadri, V;Raymond, M;Marco, AR;Pinney, J;Stremska, M;Barron, B;Lucas, C;Wase, N;Fan, Y;Unanue, E;Kundu, B;Burstyn-Cohen, T;Perry, J;Ambati, J;Ravichandran, KS;
PMID: 36732622 | DOI: 10.1038/s42255-022-00728-0

The retina is highly metabolically active, relying on glucose uptake and aerobic glycolysis. Situated in close contact to photoreceptors, a key function of cells in the retinal pigment epithelium (RPE) is phagocytosis of damaged photoreceptor outer segments (POS). Here we identify RPE as a local source of insulin in the eye that is stimulated by POS phagocytosis. We show that Ins2 messenger RNA and insulin protein are produced by RPE cells and that this production correlates with RPE phagocytosis of POS. Genetic deletion of phagocytic receptors ('loss of function') reduces Ins2, whereas increasing the levels of the phagocytic receptor MerTK ('gain of function') increases Ins2 production in male mice. Contrary to pancreas-derived systemic insulin, RPE-derived local insulin is stimulated during starvation, which also increases RPE phagocytosis. Global or RPE-specific Ins2 gene deletion decreases retinal glucose uptake in starved male mice, dysregulates retinal physiology, causes defects in phototransduction and exacerbates photoreceptor loss in a mouse model of retinitis pigmentosa. Collectively, these data identify RPE cells as a phagocytosis-induced local source of insulin in the retina, with the potential to influence retinal physiology and disease.
VEGF-B ablation in pancreatic?-cells upregulates insulin expression without affecting glucose homeostasis or islet lipid uptake

Sci Rep

2020 Jan 22

Ning FC1, Jensen N1, Mi J1, Lindstr�m W1, Balan M1, Muhl L1, Eriksson U1, Nilsson I1, Nyqvist D2.
PMID: 31969592 | DOI: 10.1038/s41598-020-57599-2

Type 2 diabetes mellitus (T2DM) affects millions of people and is linked with obesity and lipid accumulation in peripheral tissues. Increased lipid handling and lipotoxicity in insulin producing ?-cells may contribute to ?-cell dysfunction in T2DM. The vascular endothelial growth factor (VEGF)-B regulates uptake and transcytosis of long-chain fatty acids over the endothelium to tissues such as heart and skeletal muscle. Systemic inhibition of VEGF-B signaling prevents tissue lipid accumulation, improves insulin sensitivity and glucose tolerance, as well as reduces pancreatic islet triglyceride content, under T2DM conditions. To date, the role of local VEGF-B signaling in pancreatic islet physiology and in the regulation of fatty acid trans-endothelial transport in pancreatic islet is unknown. To address these questions, we have generated a mouse strain where VEGF-B is selectively depleted in ?-cells, and assessed glucose homeostasis, ?-cell function and islet lipid content under both normal and high-fat diet feeding conditions. We found that Vegfb was ubiquitously expressed throughout the pancreas, and that ?-cell Vegfb deletion resulted in increased insulin gene expression. However, glucose homeostasis and islet lipid uptake remained unaffected by ?-cell VEGF-B deficiency
Tissue-specific expression of insulin receptor isoforms in obesity/type 2 diabetes mouse models

Journal of cellular and molecular medicine

2021 Mar 19

Moruzzi, N;Lazzeri-Barcelo, F;Valladolid-Acebes, I;Moede, T;Paschen, M;Leibiger, B;Berggren, PO;Leibiger, IB;
PMID: 33742502 | DOI: 10.1111/jcmm.16452

The two insulin receptor (IR) isoforms IR-A and IR-B are responsible for the pleiotropic actions of insulin and insulin-like growth factors. Consequently, changes in IR isoform expression and in the bioavailability of their ligands will impact on IR-mediated functions. Although alteration of IR isoform expression has been linked to insulin resistance, knowledge of IR isoform expression and mechanisms underlying tissue/cell-type-specific changes in metabolic disease are lacking. Using mouse models of obesity/diabetes and measuring the mRNA of the IR isoforms and mRNA/protein levels of total IR, we provide a data set of IR isoform expression pattern that documents changes in a tissue-dependent manner. Combining tissue fractionation and a new in situ mRNA hybridization technology to visualize the IR isoforms at cellular resolution, we explored the mechanism underlying the change in IR isoform expression in perigonadal adipose tissue, which is mainly caused by tissue remodelling, rather than by a shift in IR alternative splicing in a particular cell type, e.g. adipocytes.
NPY mediates the rapid feeding and glucose metabolism regulatory functions of AgRP neurons

Nat Commun

2020 Jan 23

Engstr�m Ruud L Pereira MMA, de Solis AJ, Fenselau H Br�ning JC
PMID: 31974377 | DOI: 10.1038/s41467-020-14291-3

Activation of Agouti-Related Peptide (AgRP)-expressing neurons promotes feeding and insulin resistance. Here, we examine the contribution of neuropeptide Y (NPY)-dependent signaling to the diverse physiological consequences of activating AgRP neurons. NPY-deficient mice fail to rapidly increase food intake during the first hour of either chemo- or optogenetic activation of AgRP neurons, while the delayed increase in feeding is comparable between control and NPY-deficient mice. Acutely stimulating AgRP neurons fails to induce systemic insulin resistance in NPY-deficient mice, while increased locomotor activity upon AgRP neuron stimulation in the absence of food remains unaffected in these animals. Selective re-expression of NPY in AgRP neurons attenuates the reduced feeding response and reverses the protection from insulin resistance upon optogenetic activation of AgRP neurons in NPY-deficient mice. Collectively, these experiments reveal a pivotal role of NPY-dependent signaling in mediating the rapid feeding inducing effect and the acute glucose regulatory function governed by AgRP neurons
Cyclooxygenase-2 in adipose tissue macrophages limits adipose tissue dysfunction in obese mice

The Journal of clinical investigation

2022 May 02

Pan, Y;Cao, S;Tang, J;Arroyo, JP;Terker, AS;Wang, Y;Niu, A;Fan, X;Wang, S;Zhang, Y;Jiang, M;Wasserman, DH;Zhang, MZ;Harris, RC;
PMID: 35499079 | DOI: 10.1172/JCI152391

Obesity-associated complications are causing increasing morbidity and mortality worldwide. Expansion of adipose tissue in obesity leads to a state of low-grade chronic inflammation and dysregulated metabolism, resulting in insulin resistance and metabolic syndrome. Adipose tissue macrophages (ATMs) accumulate in obesity and are a source of proinflammatory cytokines that further aggravate adipocyte dysfunction. Macrophages are rich sources of cyclooxygenase (COX), the rate limiting enzyme for prostaglandin E2 (PGE2) production. When mice were fed a high-fat diet (HFD), ATMs increased expression of COX-2. Selective myeloid cell COX-2 deletion resulted in increased monocyte recruitment and proliferation of ATMs, leading to increased proinflammatory ATMs with decreased phagocytic ability. There were increased weight gain and adiposity, decreased peripheral insulin sensitivity and glucose utilization, increased adipose tissue inflammation and fibrosis, and abnormal adipose tissue angiogenesis. HFD pair-feeding led to similar increases in body weight, but mice with selective myeloid cell COX-2 still exhibited decreased peripheral insulin sensitivity and glucose utilization. Selective myeloid deletion of the macrophage PGE2 receptor subtype, EP4, produced a similar phenotype, and a selective EP4 agonist ameliorated the metabolic abnormalities seen with ATM COX-2 deletion. Therefore, these studies demonstrated that an ATM COX-2/PGE2/EP4 axis plays an important role in inhibiting adipose tissue dysfunction.
Central NPFF signalling is critical in the regulation of glucose homeostasis

Molecular metabolism

2022 Jun 09

Zhang, L;Koller, J;Gopalasingam, G;Qi, Y;Herzog, H;
PMID: 35691527 | DOI: 10.1016/j.molmet.2022.101525

Neuropeptide FF (NPFF) group peptides belong to the evolutionary conserved RF-amide peptide family. While they have been assigned a role as pain modulators, their roles in other aspects of physiology have received much less attention. NPFF peptides and their receptor NPFFR2 have strong and localized expression within the dorsal vagal complex that has emerged as the key centre for regulating glucose homeostasis. Therefore, we investigated the role of the NPFF system in the control of glucose metabolism and the histochemical and molecular identities of NPFF and NPFFR2 neurons.We examined glucose metabolism in Npff-/- and wild type (WT) mice using intraperitoneal (i.p.) glucose tolerance and insulin tolerance tests. Body composition and glucose tolerance was further examined in mice after 1-week and 3-week of high-fat diet (HFD). Using RNAScope double ISH, we investigated the neurochemical identity of NPFF and NPFFR2 neurons in the caudal brainstem, and the expression of receptors for peripheral factors in NPFF neurons.Lack of NPFF signalling in mice leads to improved glucose tolerance without significant impact on insulin excursion after the i.p. glucose challenge. In response to an i.p. bolus of insulin, Npff-/- mice have lower glucose excursions than WT mice, indicating an enhanced insulin action. Moreover, while HFD has rapid and potent detrimental effects on glucose tolerance, this diet-induced glucose intolerance is ameliorated in mice lacking NPFF signalling. This occurs in the absence of any significant impact of NPFF deletion on lean or fat masses, suggesting a direct effect of NPFF signalling on glucose metabolism. We further reveal that NPFF neurons in the subpostrema area (SubP) co-express receptors for peripheral factors involved in glucose homeostasis regulation such as insulin and GLP1. Furthermore, Npffr2 is expressed in the glutamatergic NPFF neurons in the SubP, and in cholinergic neurons of the dorsal motor nucleus of the vagus (DMV), indicating that central NPFF signalling is likely modulating vagal output to innervated peripheral tissues including those important for glucose metabolic control.NPFF signalling plays an important role in the regulation of glucose metabolism. NPFF neurons in the SubP are likely to receive peripheral signals and mediate the control of whole-body glucose homeostasis via centrally vagal pathways. Targeting NPFF and NPFFR2 signalling may provide a new avenue for treating type 2 diabetes and obesity.
Mapping prohormone processing by proteases in human enteroendocrine cells using genetically engineered organoid models

Proceedings of the National Academy of Sciences of the United States of America

2022 Nov 16

Beumer, J;Bauzá-Martinez, J;Veth, TS;Geurts, V;Boot, C;Gilliam-Vigh, H;Poulsen, SS;Knop, FK;Wu, W;Clevers, H;
PMID: 36343264 | DOI: 10.1073/pnas.2212057119

Enteroendocrine cells (EECs) secrete hormones in response to ingested nutrients to control physiological processes such as appetite and insulin release. EEC hormones are synthesized as large proproteins that undergo proteolytic processing to generate bioactive peptides. Mutations in EEC-enriched proteases are associated with endocrinopathies. Due to the relative rarity of EECs and a paucity of in vitro models, intestinal prohormone processing remains challenging to assess. Here, human gut organoids in which EECs can efficiently be induced are subjected to CRISPR-Cas9-mediated modification of EEC-expressed endopeptidase and exopeptidase genes. We employ mass spectrometry-based analyses to monitor peptide processing and identify glucagon production in intestinal EECs, stimulated upon bone morphogenic protein (BMP) signaling. We map the substrates and products of major EECs endo- and exopeptidases. Our studies provide a comprehensive description of peptide hormones produced by human EECs and define the roles of specific proteases in their generation.
Gut Region-Specific Interleukin 1β Induction in Different Myenteric Neuronal Subpopulations of Type 1 Diabetic Rats

International journal of molecular sciences

2023 Mar 18

Al Doghmi, A;Barta, BP;Egyed-Kolumbán, A;Onhausz, B;Kiss, S;Balázs, J;Szalai, Z;Bagyánszki, M;Bódi, N;
PMID: 36982878 | DOI: 10.3390/ijms24065804

Interleukin 1β (IL1β) is a pro-inflammatory cytokine that may play a crucial role in enteric neuroinflammation in type 1 diabetes. Therefore, our goal is to evaluate the effects of chronic hyperglycemia and insulin treatment on IL1β immunoreactivity in myenteric neurons and their different subpopulations along the duodenum-ileum-colon axis. Fluorescent immunohistochemistry was used to count IL1β expressing neurons as well as the neuronal nitric oxide synthase (nNOS)- and calcitonin gene-related peptide (CGRP)-immunoreactive myenteric neurons within this group. Tissue IL1β level was measured by ELISA in muscle/myenteric plexus-containing homogenates. IL1β mRNA was detected by RNAscope in different intestinal layers. The proportion of IL1β-immunoreactive myenteric neurons was significantly higher in the colon than in the small intestine of controls. In diabetics, this proportion significantly increased in all gut segments, which was prevented by insulin treatment. The proportion of IL1β-nNOS-immunoreactive neurons only increased in the diabetic colon, while the proportion of IL1β-CGRP-immunoreactive neurons only increased in the diabetic ileum. Elevated IL1β levels were also confirmed in tissue homogenates. IL1β mRNA induction was detected in the myenteric ganglia, smooth muscle and intestinal mucosa of diabetics. These findings support that diabetes-related IL1β induction is specific for the different myenteric neuronal subpopulations, which may contribute to diabetic motility disturbances.
Endogenous Lipid-GPR120 Signaling Modulates Pancreatic Islet Homeostasis to Different Extents

Diabetes

2022 Apr 26

Du, YQ;Sha, XY;Cheng, J;Wang, J;Lin, JY;An, WT;Pan, W;Zhang, LJ;Tao, XN;Xu, Y;Jia, YL;Yang, Z;Xiao, P;Liu, M;Sun, JP;Yu, X;
PMID: 35472681 | DOI: 10.2337/db21-0794

Long-chain fatty acids (LCFAs) not only are energy sources but also serve as signaling molecules. GPR120, an LCFA receptor, plays key roles in maintaining metabolic homeostasis. However, whether endogenous ligand-GPR120 circuits exist and how such circuits function in pancreatic islets are unclear. Here, we found that endogenous GPR120 activity in pancreatic δ cells modulated islet functions. At least two unsaturated LCFAs, oleic acid (OA) and linoleic acid (LA), were identified as GPR120 agonists within pancreatic islets. These two LCFAs promoted insulin secretion by inhibiting somatostatin secretion, and showed bias activation of GPR120 in a model system. Compared to OA, LA exerted higher potency in promoting insulin secretion, which is dependent on β-arrestin2 function. Moreover, GPR120 signaling was impaired in the diabetic db/db model, and replenishing OA and LA improved islet function in both the db/db- and STZ-treated diabetic models. Consistently, the administration of LA improved glucose metabolism in db/db mice. Collectively, our results reveal that endogenous LCFA-GPR120 circuits exist and modulate homeostasis in pancreatic islets. The contributions of phenotype differences caused by different LCFA-GPR120 circuits within islets highlight the roles of fine-tuned ligand-receptor signaling networks in maintaining islet homeostasis.
Orexin receptors 1 and 2 in serotonergic neurons differentially regulate peripheral glucose metabolism in obesity

Nature communications

2021 Sep 02

Xiao, X;Yeghiazaryan, G;Hess, S;Klemm, P;Sieben, A;Kleinridders, A;Morgan, DA;Wunderlich, FT;Rahmouni, K;Kong, D;Scammell, TE;Lowell, BB;Kloppenburg, P;Brüning, JC;Hausen, AC;
PMID: 34475397 | DOI: 10.1038/s41467-021-25380-2

The wake-active orexin system plays a central role in the dynamic regulation of glucose homeostasis. Here we show orexin receptor type 1 and 2 are predominantly expressed in dorsal raphe nucleus-dorsal and -ventral, respectively. Serotonergic neurons in ventral median raphe nucleus and raphe pallidus selectively express orexin receptor type 1. Inactivation of orexin receptor type 1 in serotonin transporter-expressing cells of mice reduced insulin sensitivity in diet-induced obesity, mainly by decreasing glucose utilization in brown adipose tissue and skeletal muscle. Selective inactivation of orexin receptor type 2 improved glucose tolerance and insulin sensitivity in obese mice, mainly through a decrease in hepatic gluconeogenesis. Optogenetic activation of orexin neurons in lateral hypothalamus or orexinergic fibers innervating raphe pallidus impaired or improved glucose tolerance, respectively. Collectively, the present study assigns orexin signaling in serotonergic neurons critical, yet differential orexin receptor type 1- and 2-dependent functions in the regulation of systemic glucose homeostasis.
Extracellular vesicles mediate the communication of adipose tissue with brain and promote cognitive impairment associated with insulin resistance

Cell metabolism

2022 Sep 06

Wang, J;Li, L;Zhang, Z;Zhang, X;Zhu, Y;Zhang, C;Bi, Y;
PMID: 36070680 | DOI: 10.1016/j.cmet.2022.08.004

Type 2 diabetes with obesity-related insulin resistance as the main manifestation is associated with an increased risk of cognitive impairment. Adipose tissue plays an important role in this process. Here, we demonstrated that adipose tissue-derived extracellular vesicles (EVs) and their cargo microRNAs (miRNAs) mediate inter-organ communication between adipose tissue and the brain, which can be transferred into the brain in a membrane protein-dependent manner and enriched in neurons, especially in the hippocampus. Further investigation suggests that adipose tissue-derived EVs from high-fat diet (HFD)-fed mice or patients with diabetes induce remarkable synaptic loss and cognitive impairment. Depletion of miRNA cargo in these EVs significantly alleviates their detrimental effects on cognitive function. Collectively, these data suggest that targeting adipose tissue-derived EVs or their cargo miRNAs may provide a promising strategy for pharmaceutical interventions for cognitive impairment in diabetes.

Pages

  • 1
  • 2
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?