ACD can configure probes for the various manual and automated assays for INSULIN for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Diabetes.
2018 Jun 27
Xin Y, Gutierrez GD, Okamoto H, Kim J, Lee AH, Adler C, Ni M, Yancopoulos GD, Murphy AJ, Gromada J.
PMID: 29950394 | DOI: 10.2337/db18-0365
Proinsulin is a misfolding-prone protein making its biosynthesis in the endoplasmic reticulum (ER) a stressful event. Pancreatic β-cells overcome ER stress by activating the unfolded protein response (UPR) and reducing insulin production. This suggests that β-cells transition between periods of high insulin biosynthesis and UPR-mediated recovery from cellular stress. We now report the pseudotime ordering of single non-diabetic human β-cells detected by large-scale RNA sequencing. We identified major states with 1) low UPR and low insulin gene expression, 2) low UPR and high insulin gene expression or 3) high UPR and low insulin gene expression. The latter state was enriched for proliferating cells. Stressed human β-cells do not dedifferentiate and show little propensity for apoptosis. These data suggest that human β-cells transition between states with high rates of biosynthesis to fulfill the body's insulin requirements to maintain normal blood glucose levels and UPR-mediated recovery from ER stress due to high insulin production.
Cell metabolism
2022 Feb 01
Cheng, J;Yang, Z;Ge, XY;Gao, MX;Meng, R;Xu, X;Zhang, YQ;Li, RZ;Lin, JY;Tian, ZM;Wang, J;Ning, SL;Xu, YF;Yang, F;Gu, JK;Sun, JP;Yu, X;
PMID: 35108512 | DOI: 10.1016/j.cmet.2021.12.022
Proc Natl Acad Sci U S A.
2017 Jan 23
Okamoto H, Cavino K, Na E, Krumm E, Kim SY, Cheng X, Murphy AJ, Yancopoulos GD, Gromada J.
PMID: 28115707 | DOI: 10.1073/pnas.1621069114
Inactivating mutations in the insulin receptor results in extreme insulin resistance. The resulting hyperglycemia is very difficult to treat, and patients are at risk for early morbidity and mortality from complications of diabetes. We used the insulin receptor antagonist S961 to induce severe insulin resistance, hyperglycemia, and ketonemia in mice. Using this model, we show that glucagon receptor (GCGR) inhibition with a monoclonal antibody normalized blood glucose and β-hydroxybutyrate levels. Insulin receptor antagonism increased pancreatic β-cell mass threefold. Normalization of blood glucose levels with GCGR-blocking antibody unexpectedly doubled β-cell mass relative to that observed with S961 alone and 5.8-fold over control. GCGR antibody blockage expanded α-cell mass 5.7-fold, and S961 had no additional effects. Collectively, these data show that GCGR antibody inhibition represents a potential therapeutic option for treatment of patients with extreme insulin-resistance syndromes.
iScience
2022 Dec 01
Xie, B;Murali, A;Vandevender, A;Chen, J;Silva, A;Bello, F;Chuan, B;Bahudhanapati, H;Sipula, I;Dedousis, N;Shah, F;O’Donnell, C;Alder, J;Jurczak, M;
| DOI: 10.1016/j.isci.2022.105569
Cell Rep.
2017 Feb 14
Steculorum SM, Timper K, Engström Ruud L, Evers N, Paeger L, Bremser S, Kloppenburg P, Brüning JC.
PMID: 28199831 | DOI: 10.1016/j.celrep.2017.01.047
Uridine-diphosphate (UDP) and its receptor P2Y6 have recently been identified as regulators of AgRP neurons. UDP promotes feeding via activation of P2Y6 receptors on AgRP neurons, and hypothalamic UDP concentrations are increased in obesity. However, it remained unresolved whether inhibition of P2Y6 signaling pharmacologically, globally, or restricted to AgRP neurons can improve obesity-associated metabolic dysfunctions. Here, we demonstrate that central injection of UDP acutely promotes feeding in diet-induced obese mice and that acute pharmacological blocking of CNS P2Y6 receptors reduces food intake. Importantly, mice with AgRP-neuron-restricted inactivation of P2Y6 exhibit reduced food intake and fat mass as well as improved systemic insulin sensitivity with improved insulin action in liver. Our results reveal that P2Y6 signaling in AgRP neurons is involved in the onset of obesity-associated hyperphagia and systemic insulin resistance. Collectively, these experiments define P2Y6 as a potential target to pharmacologically restrict both feeding and systemic insulin resistance in obesity.
Molecular Metabolism
2018 Feb 22
Lin HV, Wang J, Wang J, Li W, Wang X, Alston JT, Thomas MK, Briere DA, Syed SK, Efanov AM.
PMID: - | DOI: 10.1016/j.molmet.2018.02.008
Abstract
Objective
GPR142 agonists are being pursued as novel diabetes therapies by virtue of their insulin secretagogue effects. But it is undetermined whether GPR142’s functions in pancreatic islets are limited to regulating insulin secretion. The current study expands research on its action.
Methods and Results
We demonstrated by in situ hybridization and immunostaining that GPR142 is expressed not only in β cells but also in a subset of α cells. Stimulation of GPR142 by a selective agonist increased glucagon secretion in both human and mouse islets. More importantly, the GPR142 agonist also potentiated glucagon-like peptide-1 (GLP-1) production and its release from islets through a mechanism that involves upregulation of prohormone convertase 1/3 expression. Strikingly, stimulation of insulin secretion and increase in insulin content via GPR142 engagement requires intact GLP-1 receptor signaling. Furthermore, GPR142 agonist increased β cell proliferation and protected both mouse and human islets against stress-induced apoptosis.
Conclusions
Collectively, we provide here evidence that local GLP-1 release from α cells defines GPR142’s beneficial effects on improving β cell function and mass, and we propose that GPR142 agonism may have translatable and durable efficacy for the treatment of type 2 diabetes.
Diabetes.
2018 Apr 18
Li NX, Brown S, Kowalski T, Wu M, Yang L, Dai G, Petrov A, Ding Y, Dlugos T, Woods HB, Wang L, Erion M, Sherwin R, Kelley DE.
PMID: 29669745 | DOI: 10.2337/db18-0031
Insulin-induced hypoglycemia in diabetes is associated with impaired glucagon secretion. Here we tested whether stimulation of GPR119, a G-protein coupled receptor expressed in pancreatic islet as well as enteroendocrine cells, and previously shown to stimulate insulin and incretin secretion might enhance glucagon secretion during hypoglycemia. In the study, GPR119 agonists were applied to isolated islets or perfused pancreata perfusions to assess insulin and glucagon secretion during hypoglycemia or hyperglycemic conditions. Insulin infusion hypoglycemic clamps were performed with or without GPR119 agonist pre-treatment to assess glucagon counter-regulation in healthy and STZ-diabetic rats, including those exposed to recurrent bouts of insulin-induced hypoglycemia that leads to suppression of hypoglycemia-induced glucagon release. Hypoglycemic clamp studies were also conducted in GPR119 KO mice to evaluate whether the pharmacologic stimulatory actions of GPR119 agonists on glucagon secretion during hypoglycemia were an on-target effect. The results revealed that GPR119 agonist-treated pancreata or cultured islets had increased glucagon secretion during low glucose perfusion. In vivo, GPR119 agonists also significantly increased glucagon secretion during hypoglycemia in healthy and STZ-diabetic rats, a response that was absent in GPR119 KO mice. In addition, impaired glucagon counter-regulatory responses were restored by a GPR119 agonist in STZ-diabetic rats that were exposed to antecedent bouts of hypoglycemia. Thus, GPR119 agonists have the ability to pharmacologically augment glucagon secretion, specifically in response to hypoglycemia in diabetic rodents. Whether this effect might serve to diminish the occurrence and severity of iatrogenic hypoglycemia during intensive insulin therapy in diabetic patients remains to be established.
Journal of cellular and molecular medicine
2021 Mar 19
Moruzzi, N;Lazzeri-Barcelo, F;Valladolid-Acebes, I;Moede, T;Paschen, M;Leibiger, B;Berggren, PO;Leibiger, IB;
PMID: 33742502 | DOI: 10.1111/jcmm.16452
PLoS One
2017 Jul 25
Thivolet C, Vial G, Cassel R, Rieusset J, Madec AM.
PMID: 28742858 | DOI: 10.1371/journal.pone.0182027
Type 2 diabetes develops when beta cells are not able to fulfill insulin needs. The role of the endoplasmic reticulum-mitochondria junction in coordinating the functions of these two organelles throughout the natural history of type 2 diabetes is determinant and may explain the alterations of insulin biosynthesis. Our goal was to study endoplasmic reticulum and mitochondrial interactions in human beta cells from organ donors with type 2 diabetes. Pancreas samples were obtained via the network for pancreatic organ donors with diabetes (nPOD) based on disease status with 12 subjects with type 2 diabetes and 9 non-diabetic controls. We examined pancreatic specimens by immunofluorescence, in situ hybridization and in situ proximity ligation assay and compared the results to an in vitro model of beta-cell dysfunction. Expression of proteins that enable tethering and exchanges between endoplasmic reticulum (ER) and mitochondria and quantification of interconnection through mitochondria associated membranes (MAM) was investigated. In beta cells from type 2 diabetic cases as compared to controls, there was a significant increase in reticular expression of inositol triphosphate receptor-2 (IP3R2) both at the protein and mRNA levels, no difference in mitochondrial transit peptide receptor TOM20 and mitofusin-2 expressions, and a decrease in the expression of voltage-dependent anion channel-1 (VDAC-1). The number of IP3R2-VDAC-1 complexes identified by in situ proximity ligation assay was significantly lower in diabetic islets and in beta cells of diabetics as compared to controls. Treatment of Min6-B1 cells with palmitate altered glucose-stimulated insulin secretion, increased ER stress and significantly reduced ER-mitochondrial interactions. We can conclude that specific changes in reticular and mitochondrial beta cell proteins characterize human type 2 diabetes with reduction in organelle interactions. This finding opens new targets of intervention.
Endocrinology
2022 Aug 12
Lu, B;Chen, J;Xu, G;Grayson, TB;Jing, G;Jo, S;Shalev, A;
PMID: 35957590 | DOI: 10.1210/endocr/bqac133
Cell Metabolism
2017 Sep 05
Wasserfall C, Nick HS, Campbell-Thompson M, Beachy D, Haataja L, Kusmartseva I, Posgai A, Beery M, Rhodes C, Bonifacio E, Arvan P, Atkinson M.
PMID: 28877460 | DOI: 10.1016/j.cmet.2017.08.013
The canonical notion that type 1 diabetes (T1D) results following a complete destruction of β cells has recently been questioned as small amounts of C-peptide are detectable in patients with long-standing disease. We analyzed protein and gene expression levels for proinsulin, insulin, C-peptide, and islet amyloid polypeptide within pancreatic tissues from T1D, autoantibody positive (Ab+), and control organs. Insulin and C-peptide levels were low to undetectable in extracts from the T1D cohort; however, proinsulin and INS mRNA were detected in the majority of T1D pancreata. Interestingly, heterogeneous nuclear RNA (hnRNA) for insulin and INS-IGF2, both originating from the INS promoter, were essentially undetectable in T1D pancreata, arguing for a silent INS promoter. Expression of PCSK1, a convertase responsible for proinsulin processing, was reduced in T1D pancreata, supportive of persistent proinsulin. These data implicate the existence of β cells enriched for inefficient insulin/C-peptide production in T1D patients, potentially less susceptible to autoimmune destruction.
Cell Metab.
2017 Jul 05
Riera CE, Tsaousidou E, Halloran J, Follett P, Hahn O, Pereira MMA, Ruud LE, Alber J, Tharp K, Anderson CM, Brönneke H, Hampel B, Filho CDM, Stahl A, Brüning JC, Dillin A.
PMID: 28683287 | DOI: 10.1016/j.cmet.2017.06.015
Olfactory inputs help coordinate food appreciation and selection, but their role in systemic physiology and energy balance is poorly understood. Here we demonstrate that mice upon conditional ablation of mature olfactory sensory neurons (OSNs) are resistant to diet-induced obesity accompanied by increased thermogenesis in brown and inguinal fat depots. Acute loss of smell perception after obesity onset not only abrogated further weight gain but also improved fat mass and insulin resistance. Reduced olfactory input stimulates sympathetic nerve activity, resulting in activation of β-adrenergic receptors on white and brown adipocytes to promote lipolysis. Conversely, conditional ablation of the IGF1 receptor in OSNs enhances olfactory performance in mice and leads to increased adiposity and insulin resistance. These findings unravel a new bidirectional function for the olfactory system in controlling energy homeostasis in response to sensory and hormonal signals.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com