Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INSULIN

ACD can configure probes for the various manual and automated assays for INSULIN for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for Insulin (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (20)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • GCG (2) Apply GCG filter
  • INS (2) Apply INS filter
  • TBD (2) Apply TBD filter
  • DDIT3 (1) Apply DDIT3 filter
  • FTL (1) Apply FTL filter
  • GDF15 (1) Apply GDF15 filter
  • GPR119 (1) Apply GPR119 filter
  • AGRP (1) Apply AGRP filter
  • GPR142 (1) Apply GPR142 filter
  • Sst (1) Apply Sst filter
  • Sqstm1 (1) Apply Sqstm1 filter
  • TXNIP (1) Apply TXNIP filter
  • Ins2 (1) Apply Ins2 filter
  • Igf1r (1) Apply Igf1r filter
  • Ins1 (1) Apply Ins1 filter
  • Vegfb (1) Apply Vegfb filter
  • HSPA5 (1) Apply HSPA5 filter
  • Ghsr (1) Apply Ghsr filter
  • ITPR2 (1) Apply ITPR2 filter
  • Somatostatin (SST) (1) Apply Somatostatin (SST) filter
  • P2ry6 (1) Apply P2ry6 filter
  • GLP-1R (1) Apply GLP-1R filter
  • IL1β (1) Apply IL1β filter
  • glucagon (1) Apply glucagon filter
  • insulin (1) Apply insulin filter
  • Reg1  (1) Apply Reg1  filter
  • miR-9-3p (1) Apply miR-9-3p filter
  • Mouse/Human: Fkbp5 (1) Apply Mouse/Human: Fkbp5 filter
  • Mouse: Sf1 (1) Apply Mouse: Sf1 filter
  • IR-B (1) Apply IR-B filter
  • IR-A (1) Apply IR-A filter

Product

  • RNAscope Fluorescent Multiplex Assay (4) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.0 Assay (3) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (2) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.5 HD Red assay (2) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Multiplex Fluorescent Assay (2) Apply RNAscope Multiplex Fluorescent Assay filter
  • Basescope (1) Apply Basescope filter
  • RNAscope (1) Apply RNAscope filter
  • RNAscope 2.5 HD Brown Assay (1) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 HD Duplex (1) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 VS Assay (1) Apply RNAscope 2.5 VS Assay filter
  • TBD (1) Apply TBD filter

Research area

  • (-) Remove diabetes filter diabetes (20)
  • Metabolism (4) Apply Metabolism filter
  • Obesity (4) Apply Obesity filter
  • Other: Metabolism (4) Apply Other: Metabolism filter
  • Neuroscience (3) Apply Neuroscience filter
  • Inflammation (2) Apply Inflammation filter
  • B cell Failure (1) Apply B cell Failure filter
  • Feeding Behavior (1) Apply Feeding Behavior filter
  • Insulin (1) Apply Insulin filter
  • Other: Endocrinology (1) Apply Other: Endocrinology filter

Category

  • (-) Remove Publications filter Publications (20)
Pseudotime Ordering of Single Human β-Cells Reveals States of Insulin Production and Unfolded Protein Response

Diabetes.

2018 Jun 27

Xin Y, Gutierrez GD, Okamoto H, Kim J, Lee AH, Adler C, Ni M, Yancopoulos GD, Murphy AJ, Gromada J.
PMID: 29950394 | DOI: 10.2337/db18-0365

Proinsulin is a misfolding-prone protein making its biosynthesis in the endoplasmic reticulum (ER) a stressful event. Pancreatic β-cells overcome ER stress by activating the unfolded protein response (UPR) and reducing insulin production. This suggests that β-cells transition between periods of high insulin biosynthesis and UPR-mediated recovery from cellular stress. We now report the pseudotime ordering of single non-diabetic human β-cells detected by large-scale RNA sequencing. We identified major states with 1) low UPR and low insulin gene expression, 2) low UPR and high insulin gene expression or 3) high UPR and low insulin gene expression. The latter state was enriched for proliferating cells. Stressed human β-cells do not dedifferentiate and show little propensity for apoptosis. These data suggest that human β-cells transition between states with high rates of biosynthesis to fulfill the body's insulin requirements to maintain normal blood glucose levels and UPR-mediated recovery from ER stress due to high insulin production.

Autonomous sensing of the insulin peptide by an olfactory G protein-coupled receptor modulates glucose metabolism

Cell metabolism

2022 Feb 01

Cheng, J;Yang, Z;Ge, XY;Gao, MX;Meng, R;Xu, X;Zhang, YQ;Li, RZ;Lin, JY;Tian, ZM;Wang, J;Ning, SL;Xu, YF;Yang, F;Gu, JK;Sun, JP;Yu, X;
PMID: 35108512 | DOI: 10.1016/j.cmet.2021.12.022

Along with functionally intact insulin, diabetes-associated insulin peptides are secreted by β cells. By screening the expression and functional characterization of olfactory receptors (ORs) in pancreatic islets, we identified Olfr109 as the receptor that detects insulin peptides. The engagement of one insulin peptide, insB:9-23, with Olfr109 diminished insulin secretion through Gi-cAMP signaling and promoted islet-resident macrophage proliferation through a β cell-macrophage circuit and a β-arrestin-1-mediated CCL2 pathway, as evidenced by β-arrestin-1-/- mouse models. Systemic Olfr109 deficiency or deficiency induced by Pdx1-Cre+/-Olfr109fl/fl specifically alleviated intra-islet inflammatory responses and improved glucose homeostasis in Akita- and high-fat diet (HFD)-fed mice. We further determined the binding mode between insB:9-23 and Olfr109. A pepducin-based Olfr109 antagonist improved glucose homeostasis in diabetic and obese mouse models. Collectively, we found that pancreatic β cells use Olfr109 to autonomously detect self-secreted insulin peptides, and this detection arrests insulin secretion and crosstalks with macrophages to increase intra-islet inflammation.
Glucagon receptor inhibition normalizes blood glucose in severe insulin-resistant mice

Proc Natl Acad Sci U S A.

2017 Jan 23

Okamoto H, Cavino K, Na E, Krumm E, Kim SY, Cheng X, Murphy AJ, Yancopoulos GD, Gromada J.
PMID: 28115707 | DOI: 10.1073/pnas.1621069114

Inactivating mutations in the insulin receptor results in extreme insulin resistance. The resulting hyperglycemia is very difficult to treat, and patients are at risk for early morbidity and mortality from complications of diabetes. We used the insulin receptor antagonist S961 to induce severe insulin resistance, hyperglycemia, and ketonemia in mice. Using this model, we show that glucagon receptor (GCGR) inhibition with a monoclonal antibody normalized blood glucose and β-hydroxybutyrate levels. Insulin receptor antagonism increased pancreatic β-cell mass threefold. Normalization of blood glucose levels with GCGR-blocking antibody unexpectedly doubled β-cell mass relative to that observed with S961 alone and 5.8-fold over control. GCGR antibody blockage expanded α-cell mass 5.7-fold, and S961 had no additional effects. Collectively, these data show that GCGR antibody inhibition represents a potential therapeutic option for treatment of patients with extreme insulin-resistance syndromes.

Hepatocyte-derived GDF15 suppresses feeding and improves insulin sensitivity in obese mice

iScience

2022 Dec 01

Xie, B;Murali, A;Vandevender, A;Chen, J;Silva, A;Bello, F;Chuan, B;Bahudhanapati, H;Sipula, I;Dedousis, N;Shah, F;O’Donnell, C;Alder, J;Jurczak, M;
| DOI: 10.1016/j.isci.2022.105569

Growth differentiation factor 15 (GDF15) is a stress-induced secreted protein whose circulating levels are increased in the context of obesity. Recombinant GDF15 reduces body weight and improves glycemia in obese models, which is largely attributed to the central action of GDF15 to suppress feeding and reduce body weight. Despite these advances in knowledge, the tissue-specific sites of GDF15 production during obesity are unknown, and the effects of modulating circulating GDF15 levels on insulin sensitivity have not been evaluated directly. Here, we demonstrate that hepatocyte Gdf15 expression is sufficient for changes in circulating levels of GDF15 during obesity and that restoring Gdf15 expression specifically in hepatocytes of Gdf15 knockout mice results in marked improvements in hyperinsulinemia, hepatic insulin sensitivity, and to a lesser extent peripheral insulin sensitivity. These data support that liver hepatocytes are the primary source of circulating GDF15 in obesity.
Inhibition of P2Y6 Signaling in AgRP Neurons Reduces Food Intake and Improves Systemic Insulin Sensitivity in Obesity.

Cell Rep.

2017 Feb 14

Steculorum SM, Timper K, Engström Ruud L, Evers N, Paeger L, Bremser S, Kloppenburg P, Brüning JC.
PMID: 28199831 | DOI: 10.1016/j.celrep.2017.01.047

Uridine-diphosphate (UDP) and its receptor P2Y6 have recently been identified as regulators of AgRP neurons. UDP promotes feeding via activation of P2Y6 receptors on AgRP neurons, and hypothalamic UDP concentrations are increased in obesity. However, it remained unresolved whether inhibition of P2Y6 signaling pharmacologically, globally, or restricted to AgRP neurons can improve obesity-associated metabolic dysfunctions. Here, we demonstrate that central injection of UDP acutely promotes feeding in diet-induced obese mice and that acute pharmacological blocking of CNS P2Y6 receptors reduces food intake. Importantly, mice with AgRP-neuron-restricted inactivation of P2Y6 exhibit reduced food intake and fat mass as well as improved systemic insulin sensitivity with improved insulin action in liver. Our results reveal that P2Y6 signaling in AgRP neurons is involved in the onset of obesity-associated hyperphagia and systemic insulin resistance. Collectively, these experiments define P2Y6 as a potential target to pharmacologically restrict both feeding and systemic insulin resistance in obesity.

GPR142 Prompts Glucagon-Like Peptide-1 Release from Islets to Improve β Cell Function

Molecular Metabolism

2018 Feb 22

Lin HV, Wang J, Wang J, Li W, Wang X, Alston JT, Thomas MK, Briere DA, Syed SK, Efanov AM.
PMID: - | DOI: 10.1016/j.molmet.2018.02.008

Abstract

Objective

GPR142 agonists are being pursued as novel diabetes therapies by virtue of their insulin secretagogue effects. But it is undetermined whether GPR142’s functions in pancreatic islets are limited to regulating insulin secretion. The current study expands research on its action.

Methods and Results

We demonstrated by in situ hybridization and immunostaining that GPR142 is expressed not only in β cells but also in a subset of α cells. Stimulation of GPR142 by a selective agonist increased glucagon secretion in both human and mouse islets. More importantly, the GPR142 agonist also potentiated glucagon-like peptide-1 (GLP-1) production and its release from islets through a mechanism that involves upregulation of prohormone convertase 1/3 expression. Strikingly, stimulation of insulin secretion and increase in insulin content via GPR142 engagement requires intact GLP-1 receptor signaling. Furthermore, GPR142 agonist increased β cell proliferation and protected both mouse and human islets against stress-induced apoptosis.

Conclusions

Collectively, we provide here evidence that local GLP-1 release from α cells defines GPR142’s beneficial effects on improving β cell function and mass, and we propose that GPR142 agonism may have translatable and durable efficacy for the treatment of type 2 diabetes.

GPR119 Agonism Increases Glucagon Secretion During Insulin-Induced Hypoglycemia.

Diabetes.

2018 Apr 18

Li NX, Brown S, Kowalski T, Wu M, Yang L, Dai G, Petrov A, Ding Y, Dlugos T, Woods HB, Wang L, Erion M, Sherwin R, Kelley DE.
PMID: 29669745 | DOI: 10.2337/db18-0031

Insulin-induced hypoglycemia in diabetes is associated with impaired glucagon secretion. Here we tested whether stimulation of GPR119, a G-protein coupled receptor expressed in pancreatic islet as well as enteroendocrine cells, and previously shown to stimulate insulin and incretin secretion might enhance glucagon secretion during hypoglycemia. In the study, GPR119 agonists were applied to isolated islets or perfused pancreata perfusions to assess insulin and glucagon secretion during hypoglycemia or hyperglycemic conditions. Insulin infusion hypoglycemic clamps were performed with or without GPR119 agonist pre-treatment to assess glucagon counter-regulation in healthy and STZ-diabetic rats, including those exposed to recurrent bouts of insulin-induced hypoglycemia that leads to suppression of hypoglycemia-induced glucagon release. Hypoglycemic clamp studies were also conducted in GPR119 KO mice to evaluate whether the pharmacologic stimulatory actions of GPR119 agonists on glucagon secretion during hypoglycemia were an on-target effect. The results revealed that GPR119 agonist-treated pancreata or cultured islets had increased glucagon secretion during low glucose perfusion. In vivo, GPR119 agonists also significantly increased glucagon secretion during hypoglycemia in healthy and STZ-diabetic rats, a response that was absent in GPR119 KO mice. In addition, impaired glucagon counter-regulatory responses were restored by a GPR119 agonist in STZ-diabetic rats that were exposed to antecedent bouts of hypoglycemia. Thus, GPR119 agonists have the ability to pharmacologically augment glucagon secretion, specifically in response to hypoglycemia in diabetic rodents. Whether this effect might serve to diminish the occurrence and severity of iatrogenic hypoglycemia during intensive insulin therapy in diabetic patients remains to be established.

Tissue-specific expression of insulin receptor isoforms in obesity/type 2 diabetes mouse models

Journal of cellular and molecular medicine

2021 Mar 19

Moruzzi, N;Lazzeri-Barcelo, F;Valladolid-Acebes, I;Moede, T;Paschen, M;Leibiger, B;Berggren, PO;Leibiger, IB;
PMID: 33742502 | DOI: 10.1111/jcmm.16452

The two insulin receptor (IR) isoforms IR-A and IR-B are responsible for the pleiotropic actions of insulin and insulin-like growth factors. Consequently, changes in IR isoform expression and in the bioavailability of their ligands will impact on IR-mediated functions. Although alteration of IR isoform expression has been linked to insulin resistance, knowledge of IR isoform expression and mechanisms underlying tissue/cell-type-specific changes in metabolic disease are lacking. Using mouse models of obesity/diabetes and measuring the mRNA of the IR isoforms and mRNA/protein levels of total IR, we provide a data set of IR isoform expression pattern that documents changes in a tissue-dependent manner. Combining tissue fractionation and a new in situ mRNA hybridization technology to visualize the IR isoforms at cellular resolution, we explored the mechanism underlying the change in IR isoform expression in perigonadal adipose tissue, which is mainly caused by tissue remodelling, rather than by a shift in IR alternative splicing in a particular cell type, e.g. adipocytes.
Reduction of endoplasmic reticulum- mitochondria interactions in beta cells from patients with type 2 diabetes.

PLoS One

2017 Jul 25

Thivolet C, Vial G, Cassel R, Rieusset J, Madec AM.
PMID: 28742858 | DOI: 10.1371/journal.pone.0182027

Type 2 diabetes develops when beta cells are not able to fulfill insulin needs. The role of the endoplasmic reticulum-mitochondria junction in coordinating the functions of these two organelles throughout the natural history of type 2 diabetes is determinant and may explain the alterations of insulin biosynthesis. Our goal was to study endoplasmic reticulum and mitochondrial interactions in human beta cells from organ donors with type 2 diabetes. Pancreas samples were obtained via the network for pancreatic organ donors with diabetes (nPOD) based on disease status with 12 subjects with type 2 diabetes and 9 non-diabetic controls. We examined pancreatic specimens by immunofluorescence, in situ hybridization and in situ proximity ligation assay and compared the results to an in vitro model of beta-cell dysfunction. Expression of proteins that enable tethering and exchanges between endoplasmic reticulum (ER) and mitochondria and quantification of interconnection through mitochondria associated membranes (MAM) was investigated. In beta cells from type 2 diabetic cases as compared to controls, there was a significant increase in reticular expression of inositol triphosphate receptor-2 (IP3R2) both at the protein and mRNA levels, no difference in mitochondrial transit peptide receptor TOM20 and mitofusin-2 expressions, and a decrease in the expression of voltage-dependent anion channel-1 (VDAC-1). The number of IP3R2-VDAC-1 complexes identified by in situ proximity ligation assay was significantly lower in diabetic islets and in beta cells of diabetics as compared to controls. Treatment of Min6-B1 cells with palmitate altered glucose-stimulated insulin secretion, increased ER stress and significantly reduced ER-mitochondrial interactions. We can conclude that specific changes in reticular and mitochondrial beta cell proteins characterize human type 2 diabetes with reduction in organelle interactions. This finding opens new targets of intervention.

Alpha cell TXNIP deletion improves diabetes-associated hyperglycemia and hyperglucagonemia

Endocrinology

2022 Aug 12

Lu, B;Chen, J;Xu, G;Grayson, TB;Jing, G;Jo, S;Shalev, A;
PMID: 35957590 | DOI: 10.1210/endocr/bqac133

Thioredoxin-interacting protein (Txnip) has emerged as a key factor in pancreatic beta cell biology and its upregulation by glucose and diabetes contributes to the impairment in functional beta cell mass and glucose homeostasis. In addition, beta cell deletion of Txnip protects against diabetes in different mouse models. However, while Txnip is ubiquitously expressed, its role in pancreatic alpha cells has remained elusive. We therefore now generated an alpha cell Txnip knockout (aTKO) mouse and assessed the effects on glucose homeostasis. While no significant changes were observed on regular chow, after a 30-week high-fat diet, aTKO animals showed improvement in glucose tolerance and lower blood glucose levels compared to their control littermates. Moreover, in the context of streptozotocin (STZ)-induced diabetes, aTKO mice showed significantly lower blood glucose levels compared to controls. While serum insulin levels were reduced in both control and aTKO mice, STZ-diabetes significantly increased glucagon levels in control mice, but this effect was blunted in aTKO mice. Moreover, glucagon secretion from aTKO islets was >2-fold lower than from control islets, while insulin secretion was unchanged in aTKO islets. At the same time, no change in alpha cell or beta cell numbers or mass was observed and glucagon and insulin expression and content were comparable in isolated islets from aTKO and control mice. Thus, together the current studies suggest that downregulation of alpha cell Txnip is associated with reduced glucagon secretion and that this may contribute to the glucose-lowering effects observed in diabetic aTKO mice.
Persistence of Pancreatic Insulin mRNA Expression and Proinsulin Protein in Type 1 Diabetes Pancreata

Cell Metabolism

2017 Sep 05

Wasserfall C, Nick HS, Campbell-Thompson M, Beachy D, Haataja L, Kusmartseva I, Posgai A, Beery M, Rhodes C, Bonifacio E, Arvan P, Atkinson M.
PMID: 28877460 | DOI: 10.1016/j.cmet.2017.08.013

The canonical notion that type 1 diabetes (T1D) results following a complete destruction of β cells has recently been questioned as small amounts of C-peptide are detectable in patients with long-standing disease. We analyzed protein and gene expression levels for proinsulin, insulin, C-peptide, and islet amyloid polypeptide within pancreatic tissues from T1D, autoantibody positive (Ab+), and control organs. Insulin and C-peptide levels were low to undetectable in extracts from the T1D cohort; however, proinsulin and INS mRNA were detected in the majority of T1D pancreata. Interestingly, heterogeneous nuclear RNA (hnRNA) for insulin and INS-IGF2, both originating from the INS promoter, were essentially undetectable in T1D pancreata, arguing for a silent INS promoter. Expression of PCSK1, a convertase responsible for proinsulin processing, was reduced in T1D pancreata, supportive of persistent proinsulin. These data implicate the existence of β cells enriched for inefficient insulin/C-peptide production in T1D patients, potentially less susceptible to autoimmune destruction.

The Sense of Smell Impacts Metabolic Health and Obesity.

Cell Metab.

2017 Jul 05

Riera CE, Tsaousidou E, Halloran J, Follett P, Hahn O, Pereira MMA, Ruud LE, Alber J, Tharp K, Anderson CM, Brönneke H, Hampel B, Filho CDM, Stahl A, Brüning JC, Dillin A.
PMID: 28683287 | DOI: 10.1016/j.cmet.2017.06.015

Olfactory inputs help coordinate food appreciation and selection, but their role in systemic physiology and energy balance is poorly understood. Here we demonstrate that mice upon conditional ablation of mature olfactory sensory neurons (OSNs) are resistant to diet-induced obesity accompanied by increased thermogenesis in brown and inguinal fat depots. Acute loss of smell perception after obesity onset not only abrogated further weight gain but also improved fat mass and insulin resistance. Reduced olfactory input stimulates sympathetic nerve activity, resulting in activation of β-adrenergic receptors on white and brown adipocytes to promote lipolysis. Conversely, conditional ablation of the IGF1 receptor in OSNs enhances olfactory performance in mice and leads to increased adiposity and insulin resistance. These findings unravel a new bidirectional function for the olfactory system in controlling energy homeostasis in response to sensory and hormonal signals.

Pages

  • 1
  • 2
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?