Hypoxia-induced miR-210 modulates the inflammatory response and fibrosis upon acute ischemia
Zaccagnini, G;Greco, S;Longo, M;Maimone, B;Voellenkle, C;Fuschi, P;Carrara, M;Creo, P;Maselli, D;Tirone, M;Mazzone, M;Gaetano, C;Spinetti, G;Martelli, F;
PMID: 33934122 | DOI: 10.1038/s41419-021-03713-9
Hypoxia-induced miR-210 is a crucial component of the tissue response to ischemia, stimulating angiogenesis and improving tissue regeneration. Previous analysis of miR-210 impact on the transcriptome in a mouse model of hindlimb ischemia showed that miR-210 regulated not only vascular regeneration functions, but also inflammation. To investigate this event, doxycycline-inducible miR-210 transgenic mice (Tg-210) and anti-miR-210 LNA-oligonucleotides were used. It was found that global miR-210 expression decreased inflammatory cells density and macrophages accumulation in the ischemic tissue. To dissect the underpinning cell mechanisms, Tg-210 mice were used in bone marrow (BM) transplantation experiments and chimeric mice underwent hindlimb ischemia. MiR-210 overexpression in the ischemic tissue was sufficient to increase capillary density and tissue repair, and to reduce inflammation in the presence of Wt-BM infiltrating cells. Conversely, when Tg-210-BM cells migrated in a Wt ischemic tissue, dysfunctional angiogenesis, inflammation, and impaired tissue repair, accompanied by fibrosis were observed. The fibrotic regions were positive for α-SMA, Vimentin, and Collagen V fibrotic markers and for phospho-Smad3, highlighting the activation of TGF-β1 pathway. Identification of Tg-210 cells by in situ hybridization showed that BM-derived cells contributed directly to fibrotic areas, where macrophages co-expressing fibrotic markers were observed. Cell cultures of Tg-210 BM-derived macrophages exhibited a pro-fibrotic phenotype and were enriched with myofibroblast-like cells, which expressed canonical fibrosis markers. Interestingly, inhibitors of TGF-β type-1-receptor completely abrogated this pro-fibrotic phenotype. In conclusion, a context-dependent regulation by miR-210 of the inflammatory response was identified. miR-210 expression in infiltrating macrophages is associated to improved angiogenesis and tissue repair when the ischemic recipient tissue also expresses high levels of miR-210. Conversely, when infiltrating an ischemic tissue with mismatched miR-210 levels, macrophages expressing high miR-210 levels display a pro-fibrotic phenotype, leading to impaired tissue repair, fibrosis, and dysfunctional angiogenesis.
The Expression of Anti-Müllerian Hormone Type II Receptor (AMHRII) in Non-Gynecological Solid Tumors Offers Potential for Broad Therapeutic Intervention in Cancer
Barret, JM;Nicolas, A;Jarry, A;Dubreuil, O;Meseure, D;Passat, T;Perrial, E;Deleine, C;Champenois, G;Gaillard, S;Duchalais, E;Ray-Coquard, I;Lahmar, M;Dumontet, C;Bennouna, J;Bossard, C;Roman-Roman, S;Prost, JF;
PMID: 33917111 | DOI: 10.3390/biology10040305
The anti-Müllerian hormone (AMH) belongs to the TGF-β family and plays a key role during fetal sexual development. Various reports have described the expression of AMH type II receptor (AMHRII) in human gynecological cancers including ovarian tumors. According to qRT-PCR results confirmed by specific In-Situ Hybridization (ISH) experiments, AMHRII mRNA is expressed in an extremely restricted number of normal tissues. By performing ISH on tissue microarray of solid tumor samples AMHRII mRNA was unexpectedly detected in several non-gynecological primary cancers including lung, breast, head and neck, and colorectal cancers. AMHRII protein expression, evaluated by immunohistochemistry (IHC) was detected in approximately 70% of epithelial ovarian cancers. Using the same IHC protocol on more than 900 frozen samples covering 18 different cancer types we detected AMHRII expression in more than 50% of hepato-carcinomas, colorectal, lung, and renal cancer samples. AMHRII expression was not observed in neuroendocrine lung tumor samples nor in non-Hodgkin lymphoma samples. Complementary analyses by immunofluorescence and flow cytometry confirmed the detection of AMHRII on a panel of ovarian and colorectal cancers displaying comparable expression levels with mean values of 39,000 and 50,000 AMHRII receptors per cell, respectively. Overall, our results suggest that this embryonic receptor could be a suitable target for treating AMHRII-expressing tumors with an anti-AMHRII selective agent such as murlentamab, also named 3C23K or GM102. This potential therapeutic intervention was confirmed in vivo by showing antitumor activity of murlentamab against AMHRII-expressing colorectal cancer and hepatocarcinoma Patient-Derived tumor Xenografts (PDX) models.
Tanguy, J;Boutanquoi, P;Burgy, O;Dondaine, L;Beltramo, G;Uyanik, B;Garrido, C;Bonniaud, P;Bellaye, P;Goirand, F;
| DOI: 10.3390/ph16020177
Idiopathic pulmonary fibrosis is a chronic, progressive and lethal disease of unknown etiology that ranks among the most frequent interstitial lung diseases. Idiopathic pulmonary fibrosis is characterized by dysregulated healing mechanisms that lead to the accumulation of large amounts of collagen in the lung tissue that disrupts the alveolar architecture. The two currently available treatments, nintedanib and pirfenidone, are only able to slow down the disease without being curative. We demonstrated in the past that HSPB5, a low molecular weight heat shock protein, was involved in the development of fibrosis and therefore was a potential therapeutic target. Here, we have explored whether NCI-41356, a chemical inhibitor of HSPB5, can limit the development of pulmonary fibrosis. In vivo, we used a mouse model in which fibrosis was induced by intratracheal injection of bleomycin. Mice were treated with NaCl or NCI-41356 (six times intravenously or three times intratracheally). Fibrosis was evaluated by collagen quantification, immunofluorescence and TGF-β gene expression. In vitro, we studied the specific role of NCI-41356 on the chaperone function of HSPB5 and the inhibitory properties of NCI-41356 on HSPB5 interaction with its partner SMAD4 during fibrosis. TGF-β1 signaling was evaluated by immunofluorescence and Western Blot in epithelial cells treated with TGF-β1 with or without NCI-41356. In vivo, NCI-41356 reduced the accumulation of collagen, the expression of TGF-β1 and pro-fibrotic markers (PAI-1, α-SMA). In vitro, NCI-41356 decreased the interaction between HSPB5 and SMAD4 and thus modulated the SMAD4 canonical nuclear translocation involved in TGF-β1 signaling, which may explain NCI-41356 anti-fibrotic properties. In this study, we determined that inhibition of HSPB5 by NCI-41356 could limit pulmonary fibrosis in mice by limiting the synthesis of collagen and pro-fibrotic markers. At the molecular level, this outcome may be explained by the effect of NCI-41356 inhibiting HSPB5/SMAD4 interaction, thus modulating SMAD4 and TGF-β1 signaling. Further investigations are needed to determine whether these results can be transposed to humans.
Metastasis-associated macrophages constrain antitumor capability of natural killer cells in the metastatic site at least partially by membrane bound transforming growth factor β
Journal for immunotherapy of cancer
Brownlie, D;Doughty-Shenton, D;Yh Soong, D;Nixon, C;O Carragher, N;M Carlin, L;Kitamura, T;
PMID: 33472858 | DOI: 10.1136/jitc-2020-001740
Metastatic breast cancer is a leading cause of cancer-related death in women worldwide. Infusion of natural killer (NK) cells is an emerging immunotherapy for such malignant tumors, although elimination of the immunosuppressive tumor environment is required to improve its efficacy. The effects of this "metastatic" tumor environment on NK cells, however, remain largely unknown. Previous studies, including our own, have demonstrated that metastasis-associated macrophages (MAMs) are one of the most abundant immune cell types in the metastatic tumor niche in mouse models of metastatic breast cancer. We thus investigated the effects of MAMs on antitumor functions of NK cells in the metastatic tumor microenvironment. MAMs were isolated from the tumor-bearing lung of C57BL/6 mice intravenously injected with E0771-LG mouse mammary tumor cells. The effects of MAMs on NK cell cytotoxicity towards E0771-LG cells were evaluated in vitro by real-time fluorescence microscopy. The effects of MAM depletion on NK cell activation, maturation, and accumulation in the metastatic lung were evaluated by flow cytometry (CD69, CD11b, CD27) and in situ hybridization (Ncr1) using colony-stimulating factor 1 (CSF-1) receptor conditional knockout (Csf1r-cKO) mice. Finally, metastatic tumor loads in the chest region of mice were determined by bioluminescence imaging in order to evaluate the effect of MAM depletion on therapeutic efficacy of endogenous and adoptively transferred NK cells in suppressing metastatic tumor growth. MAMs isolated from the metastatic lung suppressed NK cell-induced tumor cell apoptosis in vitro via membrane-bound transforming growth factor β (TGF-β) dependent mechanisms. In the tumor-challenged mice, depletion of MAMs increased the percentage of activated (CD69+) and mature (CD11b+CD27-) NK cells and the number of Ncr1+ NK cells as well as NK cell-mediated tumor rejection in the metastatic site. Moreover, MAM depletion or TGF-β receptor antagonist treatment significantly enhanced the therapeutic efficacy of NK cell infusion in suppressing early metastatic tumor outgrowth. This study demonstrates that MAMs are a main negative regulator of NK cell function within the metastatic tumor niche, and MAM targeting is an attractive strategy to improve NK cell-based immunotherapy for metastatic breast cancer.
Clin Cancer Res. Feb 1; 20(3):711–723.
Cheon DJ, Tong Y, Sim MS, Dering J, Berel D, Cui X, Lester J, Beach JA, Tighiouart M, Walts AE, Karlan BY, Orsulic S (2014).
PMID: 24218511 | DOI: 10.1158/1078-0432.CCR-13-1256.
PURPOSE:
To elucidate molecular pathways contributing to metastatic cancer progression and poor clinical outcome in serous ovarian cancer.
EXPERIMENTAL DESIGN:
Poor survival signatures from three different serous ovarian cancer datasets were compared and a common set of genes was identified. The predictive value of this gene signature was validated in independent datasets. The expression of the signature genes was evaluated in primary, metastatic, and/or recurrent cancers using quantitative PCR and in situ hybridization. Alterations in gene expression by TGF-β1 and functional consequences of loss of COL11A1 were evaluated using pharmacologic and knockdown approaches, respectively.
RESULTS:
We identified and validated a 10-gene signature (AEBP1, COL11A1, COL5A1, COL6A2, LOX, POSTN, SNAI2, THBS2, TIMP3, and VCAN) that is associated with poor overall survival (OS) in patients with high-grade serous ovarian cancer. The signature genes encode extracellular matrix proteins involved in collagen remodeling. Expression of the signature genes is regulated by TGF-β1 signaling and is enriched in metastases in comparison with primary ovarian tumors. We demonstrate that levels of COL11A1, one of the signature genes, continuously increase during ovarian cancer disease progression, with the highest expression in recurrent metastases. Knockdown of COL11A1 decreases in vitro cell migration, invasion, and tumor progression in mice.
CONCLUSION:
Our findings suggest that collagen-remodeling genes regulated by TGF-β1 signaling promote metastasis and contribute to poor OS in patients with serous ovarian cancer. Our 10-gene signature has both predictive value and biologic relevance and thus may be useful as a therapeutic target.
Guan, R;Pan, M;Xu, X;Du, L;Rao, X;Fu, G;Lv, T;Zhang, L;Li, Y;Tang, P;Zhou, Y;Wang, Y;Zhang, Z;Gao, J;Zhou, H;Mi, W;Hua, G;
PMID: 37291802 | DOI: 10.1177/09636897231177377
Epithelial regeneration is critical for barrier maintenance and organ function after intestinal radiation injury. Accumulating evidence indicates that the interleukin family members play critical roles in intestinal stem-cell-mediated epithelial regeneration. However, little is known about the relationship between interleukin 33 (IL-33)/ST2 axis and intestinal regeneration after radiation injury. We demonstrate here that IL-33 expression significantly increased after radiation treatment. Deficiency of IL-33/ST2 promotes intestinal epithelial regeneration, resulting in a reduction of mortality during radiation-induced intestine injury. Using ex vivo organoid cultures, we show that recombinant IL-33 promotes intestinal stem cell differentiation. Mechanistically, the effects of IL-33 were mediated by activation of transforming growth factor-β signaling. Our findings reveal a fundamental mechanism by which IL-33 is able to regulate the intestinal crypt regeneration after tissue damage.
Luo, J;
| DOI: 10.20944/preprints202204.0189.v1
Astrocytes are essential for normal brain development and functioning. They respond to brain injury and disease through a process referred to as reactive astrogliosis, where the reactivity is highly heterogenous and context dependent. Reactive astrocytes are active contributors to brain pathology and can exert beneficial, detrimental, or mixed effects following brain insults. Transforming growth factor-β (TGF-β) has been identified as one of the key factors regulating astrocyte reactivity. Genetic and pharmacological manipulation of TGF-β signaling pathway in animal models of CNS injury and disease alters pathological and functional outcomes. This review aims to provide recent understanding regarding astrocyte reactivity and TGF-β signaling in brain injury, aging, and neurodegeneration. Further, it explores how TGF-β signaling modulates astrocyte reactivity and function.
Willems, M;Olsen, C;Caljon, B;Heremans, Y;Vloeberghs, V;De schepper, J;Tournaye, H;Van Saen, D;Goossens, E;
| DOI: 10.1093/humrep/deac107.083
Study question Which genes are differentially expressed between patients with and without testicular fibrosis? Summary answer This study revealed three X-related genes MXRA5, DCX and VC3BX, which may be involved in Klinefelter-related testicular fibrosis. What is known already Klinefelter syndrome (KS; 47,XXY) affects 1-2 in 1000 males. Most KS men suffer from azoospermia due to a loss of spermatogonial stem cells. Additionally, testicular fibrosis is detected from puberty onwards. However, mechanisms responsible for fibrosis and germ cell loss remain unknown. Previous genomics studies on KS tissue focused on germ cell loss, however, differential gene expression analyses focused on testicular fibrosis have not been performed before. This study aimed to identify factors involved in the fibrotic remodeling of KS testes by analyzing the transcriptome of (non-)fibrotic testicular tissue. Study design, size, duration Transcriptome analysis on extracted RNA from testicular biopsies was performed. RNA scope analysis and immunohistochemistry were performed as validation for the findings of the transcriptomics study. Participants/materials, setting, methods RNA sequencing was performed to compare the genetic profile of testicular biopsies from patients with (KS and testis atrophy) and without (Sertoli cell-only syndrome and fertile controls) testicular fibrosis (n = 5, each). Next, differentially expressed genes (DEGs) between KS and testis atrophy samples were compared. To gain insight in potential functions of DEGs (significant when p < 0.01 and log2FC > 2), gene-ontology and KEGG analyses were performed. To validate the gene expression results, immunohistochemistry and RNA scope were performed. Main results and the role of chance A first transcriptomic analysis of fibrotic versus non-fibrotic testis tissue resulted in 734 significant DEGs (167 up- and 567 downregulated), of which 26 were X-linked. In the top upregulated biological functions, DEGs involved in the extracellular structure organization were found, including vascular cell adhesion molecule 1 (VCAM1). KEGG analysis showed an upregulation of genes involved in the TGF-β pathway. The second analysis of KS versus testis atrophy samples resulted in 539 significant DEGs (59 up- and 480 downregulated). One of the biological functions found though gene ontology analysis was the chronic inflammatory response. When looking at the overlap of DEGs on the X-chromosome from the first and second analysis, three genes were found: matrix-remodeling associated 5 (MXRA5), doublecortin (DCX) and variable charge X-Linked 3B (VCX3B). Through validation by immunohistochemistry and RNA scope, an overexpression of VCAM1, MXRA5 and DCX was found within the fibrotic group compared to the non-fibrotic group. Limitations, reasons for caution The study included fresh testis tissue from adult KS patients, however these are quite scarce, resulting in a low number of included patients per group (n = 5). Wider implications of the findings This study revealed genes which may play a role in testicular fibrosis, including VCAM1. In addition, fibrotic genes on the X-chromosome were revealed: MXRA5, DCX and VCX3B. Up- or downregulation of these genes may prevent testicular fibrosis and thus enhance the chances at retrieving spermatozoa from KS patients. Trial registration number NA