Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for TGF-β

ACD can configure probes for the various manual and automated assays for TGF-β for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for TGF-β (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (8)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TGFB1 (2) Apply TGFB1 filter
  • Foxp3 (1) Apply Foxp3 filter
  • ROBO1 (1) Apply ROBO1 filter
  • IL-10 (1) Apply IL-10 filter
  • Tgfbr1 (1) Apply Tgfbr1 filter
  • SHH (1) Apply SHH filter
  • Nuak1 (1) Apply Nuak1 filter
  • Dusp1 (1) Apply Dusp1 filter
  • slit2 (1) Apply slit2 filter
  • robo2 (1) Apply robo2 filter
  • TNF-α (1) Apply TNF-α filter
  • TGF-β (1) Apply TGF-β filter
  • IFN-γ (1) Apply IFN-γ filter
  • IL-17A (1) Apply IL-17A filter
  • TNF (1) Apply TNF filter
  • mycobacterial 23s (1) Apply mycobacterial 23s filter
  • Optn (1) Apply Optn filter
  • SLIT1 (1) Apply SLIT1 filter
  • F5 (1) Apply F5 filter
  • Tgfβr3 (1) Apply Tgfβr3 filter
  • LINC01977 (1) Apply LINC01977 filter
  • AMHRII (1) Apply AMHRII filter

Product

  • (-) Remove RNAscope 2.5 HD Red assay filter RNAscope 2.5 HD Red assay (8)

Research area

  • Cancer (3) Apply Cancer filter
  • Other (2) Apply Other filter
  • Fibrotic Disorders (1) Apply Fibrotic Disorders filter
  • Gastric Development (1) Apply Gastric Development filter
  • Infectious Disease (1) Apply Infectious Disease filter
  • LncRNAs (1) Apply LncRNAs filter
  • Lung (1) Apply Lung filter
  • Stem Cells (1) Apply Stem Cells filter

Category

  • Publications (8) Apply Publications filter
Epithelial-derived factors induce muscularis mucosa of human induced pluripotent stem cell-derived gastric organoids

Stem cell reports

2022 Feb 22

Uehara, K;Koyanagi-Aoi, M;Koide, T;Itoh, T;Aoi, T;
PMID: 35245440 | DOI: 10.1016/j.stemcr.2022.02.002

Human gastric development has not been well studied. The generation of human pluripotent stem cell-derived gastric organoids (hGOs) comprising gastric marker-expressing epithelium without an apparent smooth muscle (SM) structure has been reported. We modified previously reported protocols to generate hGOs with muscularis mucosa (MM) from hiPSCs. Time course analyses revealed that epithelium development occurred prior to MM formation. Sonic hedgehog (SHH) and TGF-β1 were secreted by the epithelium. HH and TGF-β signal inhibition prevented subepithelial MM formation. A mechanical property of the substrate promoted SM differentiation around hGOs in the presence of TGF-β. TGF-β signaling was shown to influence the HH signaling and mechanical properties. In addition, clinical specimen findings suggested the involvement of TGF-β signaling in MM formation in recovering gastric ulcers. HH and TGF-β signaling from the epithelium to the stroma and the mechanical properties of the subepithelial environment may influence the emergence of MM in human stomach tissue.
ROBO2 is a stroma suppressor gene in the pancreas and acts via TGF-β signalling.

Nat Commun. 2018 Nov 30;9(1):5083.

2018 Nov 30

Pinho AV, Van Bulck M, Chantrill L, Arshi M, Sklyarova T, Herrmann D, Vennin C, Gallego-Ortega D, Mawson A, Giry-Laterriere M, Magenau A, Leuckx G, Baeyens L, Gill AJ, Phillips P, Timpson P, Biankin AV, Wu J, Rooman I.
PMID: 30504844 | DOI: 10.1038/s41467-018-07497-z

Whereas genomic aberrations in the SLIT-ROBO pathway are frequent in pancreatic ductal adenocarcinoma (PDAC), their function in the pancreas is unclear. Here we report that in pancreatitis and PDAC mouse models, epithelial Robo2 expression is lost while Robo1 expression becomes most prominent in the stroma. Cell cultures of mice with loss of epithelial Robo2 (Pdx1Cre;Robo2F/F) show increased activation of Robo1+ myofibroblasts and induction of TGF-β and Wnt pathways. During pancreatitis, Pdx1Cre;Robo2F/F mice present enhanced myofibroblast activation, collagen crosslinking, T-cell infiltration and tumorigenic immune markers. The TGF-β inhibitor galunisertib suppresses these effects. In PDAC patients, ROBO2 expression is overall low while ROBO1 is variably expressed in epithelium and high in stroma. ROBO2low;ROBO1high patients present the poorest survival. In conclusion, Robo2 acts non-autonomously as a stroma suppressor gene by restraining myofibroblast activation and T-cell infiltration. ROBO1/2 expression in PDAC patients may guide therapy with TGF-β inhibitors or other stroma /immune modulating agents.
PD-L1 promotes myofibroblastic activation of hepatic stellate cells by distinct mechanisms selective for TGF-β receptor I versus II

Cell reports

2022 Feb 08

Sun, L;Wang, Y;Wang, X;Navarro-Corcuera, A;Ilyas, S;Jalan-Sakrikar, N;Gan, C;Tu, X;Shi, Y;Tu, K;Liu, Q;Lou, Z;Dong, H;Sharpe, AH;Shah, VH;Kang, N;
PMID: 35139382 | DOI: 10.1016/j.celrep.2022.110349

Intrahepatic cholangiocarcinoma (ICC) contains abundant myofibroblasts derived from hepatic stellate cells (HSCs) through an activation process mediated by TGF-β. To determine the role of programmed death-ligand 1 (PD-L1) in myofibroblastic activation of HSCs, we disrupted PD-L1 of HSCs by shRNA or anti-PD-L1 antibody. We find that PD-L1, produced by HSCs, is required for HSC activation by stabilizing TGF-β receptors I (TβRI) and II (TβRII). While the extracellular domain of PD-L1 (amino acids 19-238) targets TβRII protein to the plasma membrane and protects it from lysosomal degradation, a C-terminal 260-RLRKGR-265 motif on PD-L1 protects TβRI mRNA from degradation by the RNA exosome complex. PD-L1 is required for HSC expression of tumor-promoting factors, and targeting HSC PD-L1 by shRNA or Cre/loxP recombination suppresses HSC activation and ICC growth in mice. Thus, myofibroblast PD-L1 can modulate the tumor microenvironment and tumor growth by a mechanism independent of immune suppression.
Multinucleated giant cell cytokine expression in pulmonary granulomas of cattle experimentally infected with Mycobacterium bovis.

Veterinary Immunology and Immunopathology

2016 Aug 31

Palmer MV , Thacker TC, Waters WR.
PMID: - | DOI: 10.1016/j.vetimm.2016.08.015

Regardless of host, pathogenic mycobacteria of the Mycobacterium tuberculosiscomplex such as Mycobacterium bovis, induce a characteristic lesion known as agranuloma, tubercle or tuberculoid granuloma. Granulomas represent a distinct host response to chronic antigenic stimuli, such as foreign bodies, certain bacterial components, or persistent pathogens such as M. bovis. Granulomas are composed of specific cell types including epithelioid macrophages, lymphocytes and a morphologically distinctive cell type, the multinucleated giant cell. Multinucleated giant cells are formed by the fusion of multiple macrophages; however, their function remains unclear. In humans, giant cells in tuberculous granulomas have been shown to express various cytokines, chemokines and enzymes important to the formation and maintenance of the granuloma. The objective of this study was to quantitatively assess multinucleated giant cell cytokine expression in bovine tuberculoid granulomas; focusing on cytokines of suspected relevance to bovine tuberculosis. Using calves experimentally infected with M. bovis, in situ cytokine expression was quantitatively assessed using RNAScope® for the following cytokines TNF-α, IFN-γ, TGF-β, IL-17A and IL-10. Multinucleated giant cells in bovine tuberculoid granulomas expressed all examined cytokines to varying degrees, with differential expression of TGF-β, IL-17A and IL-10 in giant cells from early versus late stage granulomas. There was a modest, positive correlation between the level of cytokine expression and cell size or number of nuclei. These results suggest that multinucleated giant cells are active participants within bovine tuberculoid granulomas, contributing to the cytokine milieu necessary to form and maintain granulomas.

Mapping mRNA expression of glaucoma genes in the healthy mouse eye.

Curr Eye Res.

2019 Apr 12

Hubens WHG, Breddels EM, Walid Y, Ramdas WD, Webers CAB, Gorgels TGMF.
PMID: 30978300 | DOI: 10.1080/02713683.2019.1607392

Abstract

Purpose/Aim: Many genes have been associated with primary open-angle glaucoma (POAG). Knowing exactly where they are expressed in the eye helps to unravel POAG pathology and to select optimal targets for intervention. We investigated whether RNA in-situ hybridization (RNA-ISH) is a convenient technique to obtain detailed pan-ocular expression data of these genes. We tested this for four diverse candidate POAG genes, selected because of unclear ocular distribution (F5 and Dusp1) and relevance for potential new therapies (Tnf, Tgfβr3). Optn, a POAG gene with well-known ocular expression pattern served as control.

METHODS:

We made a list of candidate glaucoma genes reported in genetic studies. A table of their ocular expression at the tissue level was compiled using publicly available microarray data (the ocular tissue database). To add cellular detail we performed RNA-ISH for Optn, Tnf, Tgfβr3, F5, and Dusp1 on eyes of healthy, 2-month-old, pigmented and albino mice.

RESULTS:

Expression of the Optn control matched with published immunohistochemistry data. Ocular expression of Tnf was generally low, with patches of higher Tnf expression, superficially in the corneal epithelium. F5 had a restricted expression pattern with high expression in the non-pigmented ciliary body epithelium and moderate expression in the peripapillary region. Tgfβr3 and Dusp1 showed ubiquitous expression.

CONCLUSIONS:

RNA-ISH is a suitable technique to determine the ocular expression pattern of POAG genes, adding meaningful cellular detail to existing microarray expression data. For instance, the high expression of F5 in the non-pigmented ciliary body epithelium suggests a role of this gene in aqueous humor dynamics and intraocular pressure. In addition, the ubiquitous expression of Tgfβr3 has implications for designing TGF-β related glaucoma therapies, with respect to side effects. Creating pan-ocular expression maps of POAG genes with RNA-ISH will help to identify POAG pathways in specific cell types and to select targets for drug development.

Super-enhancer hijacking LINC01977 promotes malignancy of early-stage lung adenocarcinoma addicted to the canonical TGF-β/SMAD3 pathway

Journal of hematology & oncology

2022 Aug 18

Zhang, T;Xia, W;Song, X;Mao, Q;Huang, X;Chen, B;Liang, Y;Wang, H;Chen, Y;Yu, X;Zhang, Z;Yang, W;Xu, L;Dong, G;Jiang, F;
PMID: 35982471 | DOI: 10.1186/s13045-022-01331-2

Lung adenocarcinoma (LUAD) is the leading cause of death worldwide. However, the roles of long noncoding RNAs (lncRNAs) hijacked by super-enhancers (SEs), vital regulatory elements of the epigenome, remain elusive in the progression of LUAD metastasis.SE-associated lncRNA microarrays were used to identify the dysregulated lncRNAs in LUAD. ChIP-seq, Hi-C data analysis, and luciferase reporter assays were utilized to confirm the hijacking of LINC01977 by SE. The functions and mechanisms of LINC01977 in LUAD were explored by a series of in vitro and in vivo assays.We found that LINC01977, a cancer-testis lncRNA, was hijacked by SE, which promoted proliferation and invasion both in vitro and in vivo. LINC01977 interacted with SMAD3 to induce its nuclear transport, which facilitated the interaction between SMAD3 and CBP/P300, thereby regulating the downstream target gene ZEB1. Additionally, SMAD3 up-regulated LINC09177 transcription by simultaneously binding the promoter and SE, which was induced by the infiltration of M2-like tumor-associated macrophages (TAM2), subsequently activating the TGF-β/SMAD3 pathway. Moreover, LINC01977 expression was positively correlated with TAM2 infiltration and SMAD3 expression, especially in early-stage LUAD. Higher chromatin accessibility in the SE region of LINC01977 was observed with high expression of TGF-β. Early-stage LUAD patients with high LIN01977 expression had a shorter disease-free survival.TAM2 infiltration induced a rich TGF-β microenvironment, activating SMAD3 to bind the promoter and the SE of LINC01977, which up-regulated LINC01977 expression. LINC01977 also promoted malignancy via the canonical TGF-β/SMAD3 pathway. LINC01977 hijacked by SE could be a valuable therapeutic target, especially for the treatment of early-stage LUAD.
NUAK1 promotes organ fibrosis via YAP and TGF-β/SMAD signaling

Science translational medicine

2022 Mar 23

Zhang, T;He, X;Caldwell, L;Goru, SK;Ulloa Severino, L;Tolosa, MF;Misra, PS;McEvoy, CM;Christova, T;Liu, Y;Atin, C;Zhang, J;Hu, C;Vukosa, N;Chen, X;Krizova, A;Kirpalani, A;Gregorieff, A;Ni, R;Chan, K;Gill, MK;Attisano, L;Wrana, JL;Yuen, DA;
PMID: 35320001 | DOI: 10.1126/scitranslmed.aaz4028

Fibrosis is a central pathway that drives progression of multiple chronic diseases, yet few safe and effective clinical antifibrotic therapies exist. In most fibrotic disorders, transforming growth factor-β (TGF-β)-driven scarring is an important pathologic feature and a key contributor to disease progression. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are two closely related transcription cofactors that are important for coordinating fibrogenesis after organ injury, but how they are activated in response to tissue injury has, so far, remained unclear. Here, we describe NUAK family kinase 1 (NUAK1) as a TGF-β-inducible profibrotic kinase that is up-regulated in multiple fibrotic organs in mice and humans. Mechanistically, we show that TGF-β induces a rapid increase in NUAK1 in fibroblasts. NUAK1, in turn, can promote profibrotic YAP and TGF-β/SMAD signaling, ultimately leading to organ scarring. Moreover, activated YAP and TAZ can induce further NUAK1 expression, creating a profibrotic positive feedback loop that enables persistent fibrosis. Using mouse models of kidney, lung, and liver fibrosis, we demonstrate that this fibrogenic signaling loop can be interrupted via fibroblast-specific loss of NUAK1 expression, leading to marked attenuation of fibrosis. Pharmacologic NUAK1 inhibition also reduced scarring, either when initiated immediately after injury or when initiated after fibrosis was already established. Together, our data suggest that NUAK1 plays a critical, previously unrecognized role in fibrogenesis and represents an attractive target for strategies that aim to slow fibrotic disease progression.
The Expression of Anti-Müllerian Hormone Type II Receptor (AMHRII) in Non-Gynecological Solid Tumors Offers Potential for Broad Therapeutic Intervention in Cancer

Biology

2021 Apr 07

Barret, JM;Nicolas, A;Jarry, A;Dubreuil, O;Meseure, D;Passat, T;Perrial, E;Deleine, C;Champenois, G;Gaillard, S;Duchalais, E;Ray-Coquard, I;Lahmar, M;Dumontet, C;Bennouna, J;Bossard, C;Roman-Roman, S;Prost, JF;
PMID: 33917111 | DOI: 10.3390/biology10040305

The anti-Müllerian hormone (AMH) belongs to the TGF-β family and plays a key role during fetal sexual development. Various reports have described the expression of AMH type II receptor (AMHRII) in human gynecological cancers including ovarian tumors. According to qRT-PCR results confirmed by specific In-Situ Hybridization (ISH) experiments, AMHRII mRNA is expressed in an extremely restricted number of normal tissues. By performing ISH on tissue microarray of solid tumor samples AMHRII mRNA was unexpectedly detected in several non-gynecological primary cancers including lung, breast, head and neck, and colorectal cancers. AMHRII protein expression, evaluated by immunohistochemistry (IHC) was detected in approximately 70% of epithelial ovarian cancers. Using the same IHC protocol on more than 900 frozen samples covering 18 different cancer types we detected AMHRII expression in more than 50% of hepato-carcinomas, colorectal, lung, and renal cancer samples. AMHRII expression was not observed in neuroendocrine lung tumor samples nor in non-Hodgkin lymphoma samples. Complementary analyses by immunofluorescence and flow cytometry confirmed the detection of AMHRII on a panel of ovarian and colorectal cancers displaying comparable expression levels with mean values of 39,000 and 50,000 AMHRII receptors per cell, respectively. Overall, our results suggest that this embryonic receptor could be a suitable target for treating AMHRII-expressing tumors with an anti-AMHRII selective agent such as murlentamab, also named 3C23K or GM102. This potential therapeutic intervention was confirmed in vivo by showing antitumor activity of murlentamab against AMHRII-expressing colorectal cancer and hepatocarcinoma Patient-Derived tumor Xenografts (PDX) models.
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?