ACD can configure probes for the various manual and automated assays for TGF-β for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
PLoS One.
2016 Nov 30
Palmer MV, Thacker TC, Waters WR.
PMID: 27902779 | DOI: 10.1371/journal.pone.0167471
The hallmark lesion of tuberculosis in humans and animals is the granuloma. The granuloma represents a distinct host cellular immune response composed of epithelioid macrophages, lymphocytes, and multinucleated giant cells, often surrounding a caseous necrotic core. Within the granuloma, host-pathogen interactions determine disease outcome. Factors within the granulomas such as cytokines and chemokines drive cell recruitment, activity, function and ultimately the success or failure of the host's ability to control infection. Hence, an understanding of the granuloma-level cytokine response is necessary to understand tuberculosis pathogenesis. In-situ cytokine expression patterns were measured using a novel in situ hybridization assay, known as RNAScope® in granulomas of the lungs, tracheobronchial lymph nodes and caudal mediastinal lymph nodes of cattle experimentally infected with Mycobacterium bovis via aerosol exposure. In spite of microscopic morphological similarities, significant differences were seen between late stage granulomas of the lung compared to those of the tracheobronchial lymph nodes for IL-17A, IFN-γ, TGF-β, IL10 and IL-22 but not for TNF-α. Additionally, significant differences were noted between granulomas from two different thoracic lymph nodes that both receive afferent lymphatics from the lungs (i.e., tracheobronchial and caudal mediastinal lymph nodes) for TNF-α, IL-17A, IFN-γ, TGF-β and IL-10 but not for IL-22. These findings show that granuloma morphology alone is not a reliable indicator of granuloma function as granulomas of similar morphologies can have disparate cytokine expression patterns. Moreover, anatomically distinct lymph nodes (tracheobronchial vs caudal mediastinal) differ in cytokine expression patterns even when both receive afferent lymphatics from a lung containing tuberculoid granulomas. These findings show that selection of tissue and anatomic location are critical factors in assessing host immune response to M. bovis and should be considered carefully.
Gut
2019 May 10
Jiang H, Liu X, Knolhoff BL, Hegde S, Lee KB, Jiang H, Fields RC, Pachter JA, Lim KH, DeNardo DG.
PMID: 31076405 | DOI: 10.1136/gutjnl-2018-317424
Abstract
OBJECTIVE:
We investigated how pancreatic cancer developed resistance to focal adhesion kinase (FAK) inhibition over time.
DESIGN:
Pancreatic ductal adenocarcinoma (PDAC) tumours from KPC mice (p48-CRE; LSL-KRasG12D/wt; p53flox/wt) treated with FAK inhibitor were analysed for the activation of a compensatory survival pathway in resistant tumours. We identified pathways involved in the regulation of signal transducer and activator of transcription 3 (STAT3) signalling on FAK inhibition by gene set enrichment analysis and verified these outcomes by RNA interference studies. We also tested combinatorial approaches targeting FAK and STAT3 in syngeneic transplantable mouse models of PDAC and KPC mice.
RESULTS:
In KPC mice, the expression levels of phosphorylated STAT3 (pSTAT3) were increased in PDAC cells as they progressed on FAK inhibitor therapy. This progression corresponded to decreased collagen density, lowered numbers of SMA+ fibroblasts and downregulation of the transforming growth factor beta (TGF-β)/SMAD signalling pathway in FAK inhibitor-treated PDAC tumours. Furthermore, TGF-β production by fibroblasts in vitro drives repression of STAT3 signalling and enhanced responsiveness to FAK inhibitor therapy. Knockdown of SMAD3 in pancreatic cancer cells abolished the inhibitory effects of TGF-β on pSTAT3. We further found that tumour-intrinsic STAT3 regulates the durability of the antiproliferative activity of FAK inhibitor, and combinatorial targeting of FAK and Janus kinase/STAT3 act synergistically to suppress pancreatic cancer progression in mouse models.
CONCLUSION:
Stromal depletion by FAK inhibitor therapy leads to eventual treatment resistance through the activation of STAT3 signalling. These data suggest that, similar to tumour-targeted therapies, resistance mechanisms to therapies targeting stromal desmoplasia may be critical to treatment durability.
Am J Respir Crit Care Med.
2019 Apr 09
Savary G, Dewaeles E, Diazzi S, Buscot M, Nottet N, Fassy J, Courcot E, Henaoui IS, Lemaire J, Martis N, Van der Hauwaert C, Pons N, Magnone V, Leroy S, Hofman V, Plantier L, Lebrigand K, Paquet A, Lino Cardenas CL, Vassaux G, Hofman P, Günther A, Crestani B, Wallaert B, Rezzonico R, Brousseau T, Glowacki F, Bellusci S, Perrais M, Broly F, Barbry P, Marquette CH, Cauffiez C, Mari B, Pottier N.
PMID: 30964696 | DOI: 10.1164/rccm.201807-1237OC
Abstract
RATIONALE:
Given the paucity of effective treatments for Idiopathic Pulmonary Fibrosis (IPF), new insights into the deleterious mechanisms controlling lung fibroblast activation, the key cell type driving the fibrogenic process, are essential to develop new therapeutic strategies. Transforming growth factor β (TGF-β) is the main pro-fibrotic factor, but its inhibition is associated with severe side effects due to its pleiotropic role.
OBJECTIVES:
We hypothesized that downstream non-coding effectors of TGF-β in fibroblasts may represent new effective therapeutic targets whose modulation may be well-tolerated.
METHODS:
We investigated the whole non-coding fraction of TGF-β-stimulated lung fibroblast transcriptome to identify new genomic determinants of lung fibroblast differentiation into myofibroblast. Differential expression of the long non-coding RNA DNM3OS and its associated miRNAs was validated in a murine model of pulmonary fibrosis and in IPF tissue samples. Distinct and complementary antisense oligonucleotide-based strategies aiming at interfering with DNM3OS were used to elucidate the role of DNM3OS and its associated miRNAs in IPF pathogenesis.
MEASUREMENTS AND MAIN RESULTS:
We identified DNM3OS as a fibroblast-specific critical downstream effector of TGF-β-induced lung myofibroblast activation. Mechanistically, DNM3OS regulates this process in trans by giving rise to three distinct profibrotic mature miRNAs (i.e. miR-199a-5p/3p and miR-214-3p), which influence both SMAD and non-SMAD components of TGF-β signaling in a multifaceted way. In vivo, we showed that interfering with DNM3OS function not only prevents lung fibrosis but also improves established pulmonary fibrosis.
CONCLUSION:
Pharmacological approaches aiming at interfering with DNM3OS may represent new effective therapeutic strategies in IPF.
The Journal of clinical investigation
2022 Mar 01
Horn, LA;Chariou, PL;Gameiro, SR;Qin, H;Iida, M;Fousek, K;Meyer, TJ;Cam, M;Flies, D;Langermann, S;Schlom, J;Palena, C;
PMID: 35230974 | DOI: 10.1172/JCI155148
Cell reports
2022 Feb 08
Sun, L;Wang, Y;Wang, X;Navarro-Corcuera, A;Ilyas, S;Jalan-Sakrikar, N;Gan, C;Tu, X;Shi, Y;Tu, K;Liu, Q;Lou, Z;Dong, H;Sharpe, AH;Shah, VH;Kang, N;
PMID: 35139382 | DOI: 10.1016/j.celrep.2022.110349
J Comp Pathol. 2015 Jul 16.
Palmer MV, Thacker TC, Waters WR.
PMID: 26189773 | DOI: 10.1016/j.jcpa.2015.06.004.
Kidney International (2016).
2016 Mar 25
Madan B, Patel MB, Zhang J, Bunte RM, Rudemiller NP, Griffiths R, Virshup DM, Crowley SD.
PMID: - | DOI: 10.1016/j.kint.2016.01.017
Activated Wnt signaling is critical in the pathogenesis of renal fibrosis, a final common pathway for most forms of chronic kidney disease. Therapeutic intervention by inhibition of individual Wnts or downstream Wnt/β-catenin signaling has been proposed, but these approaches do not interrupt the functions of all Wnts nor block non-canonical Wnt signaling pathways. Alternatively, an orally bioavailable small molecule, Wnt-C59, blocks the catalytic activity of the Wnt-acyl transferase porcupine, and thereby prevents secretion of all Wnt isoforms. We found that inhibiting porcupine dramatically attenuates kidney fibrosis in the murine unilateral ureteral obstruction model. Wnt-C59 treatment similarly blunts collagen mRNA expression in the obstructed kidney. Consistent with its actions to broadly arrest Wnt signaling, porcupine inhibition reduces expression of Wnt target genes and bolsters nuclear exclusion of β-catenin in the kidney following ureteral obstruction. Importantly, prevention of Wnt secretion by Wnt-C59 blunts expression of inflammatory cytokines in the obstructed kidney that otherwise provoke a positive feedback loop of Wnt expression in collagen-producing fibroblasts and epithelial cells. Thus, therapeutic targeting of porcupine abrogates kidney fibrosis not only by overcoming the redundancy of individual Wnt isoforms but also by preventing upstream cytokine-induced Wnt generation. These findings reveal a novel therapeutic maneuver to protect the kidney from fibrosis by interrupting a pathogenic crosstalk loop between locally generated inflammatory cytokines and the Wnt/β-catenin signaling pathway.
Nature immunology
2022 Jan 20
McCaffrey, EF;Donato, M;Keren, L;Chen, Z;Delmastro, A;Fitzpatrick, MB;Gupta, S;Greenwald, NF;Baranski, A;Graf, W;Kumar, R;Bosse, M;Fullaway, CC;Ramdial, PK;Forgó, E;Jojic, V;Van Valen, D;Mehra, S;Khader, SA;Bendall, SC;van de Rijn, M;Kalman, D;Kaushal, D;Hunter, RL;Banaei, N;Steyn, AJC;Khatri, P;Angelo, M;
PMID: 35058616 | DOI: 10.1038/s41590-021-01121-x
PLoS One. 2014 May 16;9(5):e97165.
Sawa Y, Takata S, Hatakeyama Y, Ishikawa H, Tsuruga E.
PMID: 24835775 | DOI: 10.1371/journal.pone.0097165.
Nat Med.
2017 Aug 28
Yang L, Chang CC, Sun Z, Madsen D, Zhu H, Padkjær SB, Wu X, Huang T, Hultman K, Paulsen SJ, Wang J, Bugge A, Frantzen JB, Nørgaard P, Jeppesen JF, Yang Z, Secher A, Chen H, Li X, John LM, Shan B, He Z, Gao X, Su J, Hansen KT, Yang W, Jørgensen SB.
PMID: 28846099 | DOI: 10.1038/nm.4394
Growth differentiation factor 15 (GDF15; also known as MIC-1) is a divergent member of the TGF-β superfamily and is associated with body-weight regulation in humans and rodents. However, the cognate receptor of GDF15 is unknown. Here we show that GDF15 binds specifically to GDNF family receptor α-like (GFRAL) with high affinity, and that GFRAL requires association with the coreceptor RET to elicit intracellular signaling in response to GDF15 stimulation. We also found that GDF15-mediated reductions in food intake and body weight of mice with obesity were abolished in GFRAL-knockout mice. We further found that GFRAL expression was limited to hindbrain neurons and not present in peripheral tissues, which suggests that GDF15-GFRAL-mediated regulation of food intake is by a central mechanism. Lastly, given that GDF15 did not increase energy expenditure in treated mice with obesity, the anti-obesity actions of the cytokine are likely driven primarily by a reduction in food intake.
Immunity. 2018 Dec 18;49(6):1132-1147.e7.
2018 Dec 18
Nakanishi Y, Duran A, L'Hermitte A, Shelton PM, Nakanishi N, Reina-Campos M, Huang J, Soldevila F, Baaten BJG, Tauriello DVF, Castilla EA, Bhangoo MS, Bao F, Sigal D, Diaz-Meco MT, Moscat J.
PMID: 30552022 | DOI: 10.1016/j.immuni.2018.09.013
Biochemical and biophysical research communications
2023 Mar 16
Yanagihara, T;Zhou, Q;Tsubouchi, K;Revill, S;Ayoub, A;Gholiof, M;Chong, SG;Dvorkin-Gheva, A;Ask, K;Shi, W;Kolb, MR;
PMID: 36958255 | DOI: 10.1016/j.bbrc.2023.03.020
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com