ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
J Neuropathol Exp Neurol.
2018 Jan 08
Knight AC, Brill SA, Queen SE, Tarwater PM, Mankowski JL.
PMID: 29319809 | DOI: 10.1093/jnen/nlx115
Chronic microglial activation and associated neuroinflammation are key factors in neurodegenerative diseases including HIV-associated neurocognitive disorders. Colony stimulating factor 1 receptor (CSF1R)-mediated signaling is constitutive in cells of the myeloid lineage, including microglia, promoting cell survival, proliferation, and differentiation. In amyotrophic lateral sclerosis and Alzheimers disease, CSF1R is upregulated. Inhibiting CSF1R signaling in animal models of these diseases improved disease outcomes. In our studies, CNS expression of the CSF1R ligand, colony-stimulating factor 1 (CSF1) was significantly increased in a SIV/macaque model of HIV CNS disease. Using a Nanostring nCounter immune panel, we found CSF1 overexpression was strongly correlated with upregulation of microglial genes involved in antiviral and oxidative stress responses. Using in situ hybridization, we found that CSF1R mRNA was only present in Iba-1 positive microglia. By ELISA and immunostaining with digital image analysis, SIV-infected macaques had significantly higher CSF1R levels in frontal cortex than uninfected macaques (p = 0.018 and p = 0.02, respectively). SIV-infected macaques treated with suppressive ART also had persistently elevated CSF1R similar to untreated SIV-infected macaques. Coordinate upregulation of CSF1 and CSF1R expression implicates this signaling pathway in progressive HIV CNS disease.
Viruses.
2018 Sep 20
Reisler RB, Zeng X, Schellhase CW, Bearss JJ, Warren TK, Trefry JC, Christopher GW, Kortepeter MG, Bavari S, Cardile AP.
PMID: 30241284 | DOI: 10.3390/v10100513
In the 2014⁻2016 West Africa Ebola Virus (EBOV) outbreak, there was a significant concern raised about the potential for secondary bacterial infection originating from the gastrointestinal tract, which led to the empiric treatment of many patients with antibiotics. This retrospective pathology case series summarizes the gastrointestinal pathology observed in control animals in the rhesus EBOV-Kikwit intramuscular 1000 plaque forming unit infection model. All 31 Non-human primates (NHPs) exhibited lymphoid depletion of gut-associated lymphoid tissue (GALT) but the severity and the specific location of the depletion varied. Mesenteric lymphoid depletion and necrosis were present in 87% (27/31) of NHPs. There was mucosal barrier disruption of the intestinal tract with mucosal necrosis and/or ulceration most notably in the duodenum (16%), cecum (16%), and colon (29%). In the intestinal tract, hemorrhage was noted most frequently in the duodenum (52%) and colon (45%). There were focal areas of bacterial submucosal invasion in the gastrointestinal (GI) tract in 9/31 (29%) of NHPs. Only 2/31 (6%) had evidence of pancreatic necrosis. One NHP (3%) experienced jejunal intussusception which may have been directly related to EBOV. Immunofluorescence assays demonstrated EBOV antigen in CD68+ macrophage/monocytes and endothelial cells in areas of GI vascular injury or necrosis.
Sci Rep.
2019 Mar 14
Saucedo B, Garner TWJ, Kruithof N, Allain SJR, Goodman MJ, Cranfield RJ, Sergeant C, Vergara DA, Kik MJL, Forzán MJ, van Beurden SJ, Gröne A.
PMID: 30872735 | DOI: 10.1038/s41598-019-41214-0
Ranavirus is the second most common infectious cause of amphibian mortality. These viruses affect caudates, an order in which information regarding Ranavirus pathogenesis is scarce. In the Netherlands, two strains (CMTV-NL I and III) were suspected to possess distinct pathogenicity based on field data. To investigate susceptibility and disease progression in urodeles and determine differences in pathogenicity between strains, 45 adult smooth newts (Lissotriton vulgaris) were challenged via bath exposure with these ranaviruses and their detection in organs and feces followed over time by PCR, immunohistochemistry and in situ hybridization. Ranavirus was first detected at 3 days post infection (p.i.) in the oral cavity and upper respiratory mucosa. At 6 days p.i, virus was found in connective tissues and vasculature of the gastrointestinal tract. Finally, from 9 days p.i onwards there was widespread Ranavirus disease in various organs including skin, kidneys and gonads. Higher pathogenicity of the CMTV-NL I strain was confirmed by higher correlation coefficient of experimental group and mortality of challenged animals. Ranavirus-exposed smooth newts shed virus in feces intermittently and infection was seen in the absence of lesions or clinical signs, indicating that this species can harbor subclinical infections and potentially serve as disease reservoirs.
Pathogens (Basel, Switzerland)
2022 Sep 12
Berry, N;Stein, M;Ferguson, D;Ham, C;Hall, J;Giles, E;Kempster, S;Adedeji, Y;Almond, N;Herrera, C;
PMID: 36145466 | DOI: 10.3390/pathogens11091033
Virologica Sinica
2022 Jul 18
Ma, QQ;Wang, HJ;Li, J;Li, MQ;Cao, TS;Wu, XY;Qiu, HY;Zhao, H;Qin, CF;
PMID: 35863604 | DOI: 10.1016/j.virs.2022.07.009
Science translational medicine
2022 Feb 09
Liu, J;Trefry, JC;Babka, AM;Schellhase, CW;Coffin, KM;Williams, JA;Raymond, JLW;Facemire, PR;Chance, TB;Davis, NM;Scruggs, JL;Rossi, FD;Haddow, AD;Zelko, JM;Bixler, SL;Crozier, I;Iversen, PL;Pitt, ML;Kuhn, JH;Palacios, G;Zeng, X;
PMID: 35138912 | DOI: 10.1126/scitranslmed.abi5229
J Virol.
2018 Mar 21
Hsu DC, Sunyakumthorn P, Wegner M, Schuetz A, Silsorn D, Estes JD, Deleage C, Tomusange K, Lakhashe SK, Ruprecht RM, Lombardini E, Im-Erbsin R, Kuncharin Y, Phuang-Ngern Y, Inthawong D, Chuenarom W, Burke R, Robb ML, Ndhlovu LC, Ananworanich J, Valcour V,
PMID: 29563297 | DOI: 10.1128/JVI.00222-18
Studies utilizing highly pathogenic simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus (SHIV) have largely focused on the immunopathology of the central nervous system (CNS) during end-stage neuro AIDS and SIV encephalitis. However, this may not model pathophysiology in earlier stages of infection. In this non-accelerated SHIV model, plasma SHIV RNA levels and peripheral blood and colonic CD4 T+ cell counts mirrored early HIV infection in humans. At 12 weeks post infection, cerebrospinal fluid (CSF) detection of SHIV RNA and elevations in IP-10 and MCP-1 reflected a discrete neurovirologic process. Immunohistochemical staining revealed a diffuse, low-level CD3+, CD4- cellular infiltrate in the brain parenchyma, without a concomitant increase in CD68/CD163+ monocytes, macrophages and activated microglial cells. Rare SHIV-infected cells in the brain parenchyma and meninges were identified by RNAscope®in situhybridization. In the meninges, there was also a trend toward increased CD4+ infiltration in SHIV-infected animals, but no differences in CD68/CD163+ cells between SHIV-infected and uninfected control animals. These data suggest that in a model that closely recapitulates human disease, CNS inflammation and SHIV in CSF may be predominantly mediated by T-cell mediated processes during early infection in both brain parenchyma and meninges. Because SHIV expresses an HIV rather than SIV envelope, this model could inform studies to understand potential HIV cure strategies targeting the HIV envelope.IMPORTANCE Animal models of the neurologic effects of HIV are needed because brain pathology is difficult to assess in humans. Many current models focus on the effects of late stage disease utilizing simian immunodeficiency virus (SIV). In the era of antiretroviral therapy, manifestations of late stage HIV are less common. Furthermore, new interventions such as monoclonal antibodies and therapeutic vaccinations target HIV envelope. We therefore describe a new model of central nervous system involvement in rhesus macaques infected with simian-human immunodeficiency virus (SHIV) expressing HIV envelope in earlier, less aggressive stages of disease. Here, we demonstrate that SHIV mimics the early clinical course in humans, and that early neurologic inflammation is characterized by predominantly T cell mediated inflammation, accompanied by SHIV infection in the brain and meninges. This model can be utilized to assess the effect of novel therapies targeted to HIV envelope on reducing brain inflammation before end stage disease.
Viruses
2019 Jan 15
Cornish JP, Moore IN, Perry DL, Lara A, Minai M, Promeneur D, Hagen KR, Virtaneva K, Paneru M, Buechler CR, O'Connor DH, Bailey AL, Cooper K, Mazur S, Bernbaum JG, Pettitt J, Jahrling PB, Kuhn JH, Johnson RF.
PMID: 30650570 | DOI: 10.3390/v11010067
Simian hemorrhagic fever virus (SHFV) causes a fulminant and typically lethal viral hemorrhagic fever (VHF) in macaques (Cercopithecinae: Macaca spp.) but causes subclinical infections in patas monkeys (Cercopithecinae: Erythrocebus patas). This difference in disease course offers a unique opportunity to compare host responses to infection by a VHF-causing virus in biologically similar susceptible and refractory animals. Patas and rhesus monkeys were inoculated side-by-side with SHFV. Unlike the severe disease observed in rhesus monkeys, patas monkeys developed a limited clinical disease characterized by changes in complete blood counts, serum chemistries, and development of lymphadenopathy. Viral RNA was measurable in circulating blood 2 days after exposure, and its duration varied by species. Infectious virus was detected in terminal tissues of both patas and rhesus monkeys. Varying degrees of overlap in changes in serum concentrations of interferon (IFN)-γ, monocyte chemoattractant protein (MCP)-1, and interleukin (IL)-6 were observed between patas and rhesus monkeys, suggesting the presence of common and species-specific cytokine responses to infection. Similarly, quantitative immunohistochemistry of livers from terminal monkeys and whole blood flow cytometry revealed varying degrees of overlap in changes in macrophages, natural killer cells, and T-cells. The unexpected degree of overlap in host response suggests that relatively small subsets of a host's response to infection may be responsible for driving hemorrhagic fever pathogenesis. Furthermore, comparative SHFV infection in patas and rhesus monkeys offers an experimental model to characterize host⁻response mechanisms associated with viral hemorrhagic fever and evaluate pan-viral hemorrhagic fever countermeasures.
Front Immunol.
2019 Feb 28
Su H, Cheng Y, Sravanam S, Mathews S, Gorantla S, Poluektova LY, Dash PK, Gendelman HE.
PMID: 30873181 | DOI: 10.3389/fimmu.2019.00340
Human immunodeficiency virus type one (HIV-1) tissue compartments are established soon after viral infection. However, the timing in which virus gains a permanent foothold in tissue and the cellular factors that control early viral-immune events are incompletely understood. These are critical events in studies of HIV-1 pathogenesis and in the development of viral reservoirs after antiretroviral therapy. Moreover, factors affecting the permanence of viral-tissue interactions underlie barriers designed to eliminate HIV-1 infection. To this end we investigated the temporal and spatial viral and host factors during HIV-1 seeding of tissue compartments. Two humanized NOD.Cg-Prkdcscid IL2rgtm1Wjl/SzJ mouse models were employed. In the first, immune deficient mice were reconstituted with human CD34+ cord blood hematopoietic stem cells (HSC) (hu-HSC) and in the second mice were transplanted with adult mature human peripheral lymphocytes (hu-PBL). Both, in measure, reflect relationships between immune activation and viral infection as seen in an infected human host. Following humanization both mice models were infected with HIV-1ADA at 104 50% tissue culture infective doses. Viral nucleic acids and protein and immune cell profiles were assayed in brain, lung, spleen, liver, kidney, lymph nodes, bone marrow, and gut from 3 to 42 days. Peripheral CD4+ T cell loss began at 3 days together with detection of HIV-1 RNA in both mouse models after initiation of HIV-1 infection. HIV-1 was observed in all tested tissues at days 3 and 14 in hu- PBL and HSC mice, respectively. Immune impairment was most prominent in hu-PBL mice. T cell maturation and inflammation factors were linked directly to viral tissue seeding in both mouse models. We conclude that early viral tissue compartmentalization provides a roadmap for investigations into HIV-1 elimination.
Vet Pathol.
2019 Apr 14
Lovstad JN, Ossiboff RJ, Kinsel MJ, Gamble KC.
PMID: 30983531 | DOI: 10.1177/0300985819837722
During a 19-month period, 5 smooth green snakes ( Opheodrys vernalis) maintained as an ex situ conservation colony presented with rapid clinical progression of locally invasive oropharyngeal squamous cell carcinoma. All 5 originated from the same wild source and were housed together or in close proximity. An infectious cause was considered likely, and nested conventional polymerase chain reaction (PCR) and in situ hybridization confirmed the presence of a novel alphaherpesvirus, Opheodrys herpesvirus 1, in the neoplastic tissue in 4 of the 5 snakes. Retrospective screening of previously submitted smooth green snakes by in situ hybridization did not detect virus in prior submissions from the colony. This report documents molecular characterization of an ophidian herpesvirus as well as colocalization of its viral nucleic acid with neoplastic transformation in snakes.
Virchows Arch. 2015 Jul 31.
Laco J, Sieglová K, Vošmiková H, Dundr P, Němejcová K, Michálek J, Čelakovský P, Chrobok V, Mottl R, Mottlová A, Tuček L, Slezák R, Chmelařová M, Sirák I, Vošmik M, Ryška A.
PMID: 26229021
Human Pathology (2015)
Chang SY, Keeney M, Law M, Donovan J, Aubry MC, Garcia J.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com